| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnindd.1 | ⊢ ( 𝑥  =  1  →  ( 𝜓  ↔  𝜒 ) ) | 
						
							| 2 |  | nnindd.2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝜓  ↔  𝜃 ) ) | 
						
							| 3 |  | nnindd.3 | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( 𝜓  ↔  𝜏 ) ) | 
						
							| 4 |  | nnindd.4 | ⊢ ( 𝑥  =  𝐴  →  ( 𝜓  ↔  𝜂 ) ) | 
						
							| 5 |  | nnindd.5 | ⊢ ( 𝜑  →  𝜒 ) | 
						
							| 6 |  | nnindd.6 | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ )  ∧  𝜃 )  →  𝜏 ) | 
						
							| 7 | 1 | imbi2d | ⊢ ( 𝑥  =  1  →  ( ( 𝜑  →  𝜓 )  ↔  ( 𝜑  →  𝜒 ) ) ) | 
						
							| 8 | 2 | imbi2d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝜑  →  𝜓 )  ↔  ( 𝜑  →  𝜃 ) ) ) | 
						
							| 9 | 3 | imbi2d | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( ( 𝜑  →  𝜓 )  ↔  ( 𝜑  →  𝜏 ) ) ) | 
						
							| 10 | 4 | imbi2d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝜑  →  𝜓 )  ↔  ( 𝜑  →  𝜂 ) ) ) | 
						
							| 11 | 6 | ex | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ )  →  ( 𝜃  →  𝜏 ) ) | 
						
							| 12 | 11 | expcom | ⊢ ( 𝑦  ∈  ℕ  →  ( 𝜑  →  ( 𝜃  →  𝜏 ) ) ) | 
						
							| 13 | 12 | a2d | ⊢ ( 𝑦  ∈  ℕ  →  ( ( 𝜑  →  𝜃 )  →  ( 𝜑  →  𝜏 ) ) ) | 
						
							| 14 | 7 8 9 10 5 13 | nnind | ⊢ ( 𝐴  ∈  ℕ  →  ( 𝜑  →  𝜂 ) ) | 
						
							| 15 | 14 | impcom | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ℕ )  →  𝜂 ) |