Step |
Hyp |
Ref |
Expression |
1 |
|
1re |
⊢ 1 ∈ ℝ |
2 |
|
0lt1 |
⊢ 0 < 1 |
3 |
1 2
|
pm3.2i |
⊢ ( 1 ∈ ℝ ∧ 0 < 1 ) |
4 |
|
rpregt0 |
⊢ ( 𝐵 ∈ ℝ+ → ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) |
5 |
4
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) |
6 |
|
nnre |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℝ ) |
7 |
|
nngt0 |
⊢ ( 𝐴 ∈ ℕ → 0 < 𝐴 ) |
8 |
6 7
|
jca |
⊢ ( 𝐴 ∈ ℕ → ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) |
10 |
|
lediv2 |
⊢ ( ( ( 1 ∈ ℝ ∧ 0 < 1 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( 1 ≤ 𝐵 ↔ ( 𝐴 / 𝐵 ) ≤ ( 𝐴 / 1 ) ) ) |
11 |
3 5 9 10
|
mp3an2i |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) → ( 1 ≤ 𝐵 ↔ ( 𝐴 / 𝐵 ) ≤ ( 𝐴 / 1 ) ) ) |
12 |
|
nncn |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℂ ) |
13 |
12
|
div1d |
⊢ ( 𝐴 ∈ ℕ → ( 𝐴 / 1 ) = 𝐴 ) |
14 |
13
|
adantr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 / 1 ) = 𝐴 ) |
15 |
14
|
breq2d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 / 𝐵 ) ≤ ( 𝐴 / 1 ) ↔ ( 𝐴 / 𝐵 ) ≤ 𝐴 ) ) |
16 |
11 15
|
bitrd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ+ ) → ( 1 ≤ 𝐵 ↔ ( 𝐴 / 𝐵 ) ≤ 𝐴 ) ) |