| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 2 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 3 | 1 2 | pm3.2i | ⊢ ( 1  ∈  ℝ  ∧  0  <  1 ) | 
						
							| 4 |  | rpregt0 | ⊢ ( 𝐵  ∈  ℝ+  →  ( 𝐵  ∈  ℝ  ∧  0  <  𝐵 ) ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℝ+ )  →  ( 𝐵  ∈  ℝ  ∧  0  <  𝐵 ) ) | 
						
							| 6 |  | nnre | ⊢ ( 𝐴  ∈  ℕ  →  𝐴  ∈  ℝ ) | 
						
							| 7 |  | nngt0 | ⊢ ( 𝐴  ∈  ℕ  →  0  <  𝐴 ) | 
						
							| 8 | 6 7 | jca | ⊢ ( 𝐴  ∈  ℕ  →  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℝ+ )  →  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 ) ) | 
						
							| 10 |  | lediv2 | ⊢ ( ( ( 1  ∈  ℝ  ∧  0  <  1 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  <  𝐵 )  ∧  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 ) )  →  ( 1  ≤  𝐵  ↔  ( 𝐴  /  𝐵 )  ≤  ( 𝐴  /  1 ) ) ) | 
						
							| 11 | 3 5 9 10 | mp3an2i | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℝ+ )  →  ( 1  ≤  𝐵  ↔  ( 𝐴  /  𝐵 )  ≤  ( 𝐴  /  1 ) ) ) | 
						
							| 12 |  | nncn | ⊢ ( 𝐴  ∈  ℕ  →  𝐴  ∈  ℂ ) | 
						
							| 13 | 12 | div1d | ⊢ ( 𝐴  ∈  ℕ  →  ( 𝐴  /  1 )  =  𝐴 ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℝ+ )  →  ( 𝐴  /  1 )  =  𝐴 ) | 
						
							| 15 | 14 | breq2d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℝ+ )  →  ( ( 𝐴  /  𝐵 )  ≤  ( 𝐴  /  1 )  ↔  ( 𝐴  /  𝐵 )  ≤  𝐴 ) ) | 
						
							| 16 | 11 15 | bitrd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℝ+ )  →  ( 1  ≤  𝐵  ↔  ( 𝐴  /  𝐵 )  ≤  𝐴 ) ) |