Metamath Proof Explorer


Theorem nnlem1lt

Description: Positive integer ordering relation. (Contributed by NM, 21-Jun-2005)

Ref Expression
Assertion nnlem1lt ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀𝑁 ↔ ( 𝑀 − 1 ) < 𝑁 ) )

Proof

Step Hyp Ref Expression
1 nnz ( 𝑀 ∈ ℕ → 𝑀 ∈ ℤ )
2 nnz ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ )
3 zlem1lt ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀𝑁 ↔ ( 𝑀 − 1 ) < 𝑁 ) )
4 1 2 3 syl2an ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀𝑁 ↔ ( 𝑀 − 1 ) < 𝑁 ) )