| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnord |
⊢ ( 𝐴 ∈ ω → Ord 𝐴 ) |
| 2 |
|
ordirr |
⊢ ( Ord 𝐴 → ¬ 𝐴 ∈ 𝐴 ) |
| 3 |
1 2
|
syl |
⊢ ( 𝐴 ∈ ω → ¬ 𝐴 ∈ 𝐴 ) |
| 4 |
|
elom |
⊢ ( 𝐴 ∈ ω ↔ ( 𝐴 ∈ On ∧ ∀ 𝑥 ( Lim 𝑥 → 𝐴 ∈ 𝑥 ) ) ) |
| 5 |
4
|
simprbi |
⊢ ( 𝐴 ∈ ω → ∀ 𝑥 ( Lim 𝑥 → 𝐴 ∈ 𝑥 ) ) |
| 6 |
|
limeq |
⊢ ( 𝑥 = 𝐴 → ( Lim 𝑥 ↔ Lim 𝐴 ) ) |
| 7 |
|
eleq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐴 ) ) |
| 8 |
6 7
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( Lim 𝑥 → 𝐴 ∈ 𝑥 ) ↔ ( Lim 𝐴 → 𝐴 ∈ 𝐴 ) ) ) |
| 9 |
8
|
spcgv |
⊢ ( 𝐴 ∈ ω → ( ∀ 𝑥 ( Lim 𝑥 → 𝐴 ∈ 𝑥 ) → ( Lim 𝐴 → 𝐴 ∈ 𝐴 ) ) ) |
| 10 |
5 9
|
mpd |
⊢ ( 𝐴 ∈ ω → ( Lim 𝐴 → 𝐴 ∈ 𝐴 ) ) |
| 11 |
3 10
|
mtod |
⊢ ( 𝐴 ∈ ω → ¬ Lim 𝐴 ) |