Step |
Hyp |
Ref |
Expression |
1 |
|
zgt1rpn0n1 |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ) |
2 |
1
|
adantr |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ℤ ) → ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ) |
3 |
2
|
simp1d |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ℤ ) → 𝐵 ∈ ℝ+ ) |
4 |
3
|
rpcnd |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ℤ ) → 𝐵 ∈ ℂ ) |
5 |
4
|
adantr |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ℤ ) ∧ 𝑀 = 0 ) → 𝐵 ∈ ℂ ) |
6 |
2
|
simp2d |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ℤ ) → 𝐵 ≠ 0 ) |
7 |
6
|
adantr |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ℤ ) ∧ 𝑀 = 0 ) → 𝐵 ≠ 0 ) |
8 |
2
|
simp3d |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ℤ ) → 𝐵 ≠ 1 ) |
9 |
8
|
adantr |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ℤ ) ∧ 𝑀 = 0 ) → 𝐵 ≠ 1 ) |
10 |
|
logb1 |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) → ( 𝐵 logb 1 ) = 0 ) |
11 |
5 7 9 10
|
syl3anc |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( 𝐵 logb 1 ) = 0 ) |
12 |
|
simpr |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ℤ ) ∧ 𝑀 = 0 ) → 𝑀 = 0 ) |
13 |
12
|
oveq2d |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( 𝐵 ↑ 𝑀 ) = ( 𝐵 ↑ 0 ) ) |
14 |
5
|
exp0d |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( 𝐵 ↑ 0 ) = 1 ) |
15 |
13 14
|
eqtrd |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( 𝐵 ↑ 𝑀 ) = 1 ) |
16 |
15
|
oveq2d |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( 𝐵 logb ( 𝐵 ↑ 𝑀 ) ) = ( 𝐵 logb 1 ) ) |
17 |
11 16 12
|
3eqtr4d |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( 𝐵 logb ( 𝐵 ↑ 𝑀 ) ) = 𝑀 ) |
18 |
4
|
adantr |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ℤ ) ∧ 𝑀 ≠ 0 ) → 𝐵 ∈ ℂ ) |
19 |
6
|
adantr |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ℤ ) ∧ 𝑀 ≠ 0 ) → 𝐵 ≠ 0 ) |
20 |
8
|
adantr |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ℤ ) ∧ 𝑀 ≠ 0 ) → 𝐵 ≠ 1 ) |
21 |
|
eldifpr |
⊢ ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ↔ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ) |
22 |
18 19 20 21
|
syl3anbrc |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ℤ ) ∧ 𝑀 ≠ 0 ) → 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ) |
23 |
3
|
adantr |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ℤ ) ∧ 𝑀 ≠ 0 ) → 𝐵 ∈ ℝ+ ) |
24 |
|
simpr |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ℤ ) → 𝑀 ∈ ℤ ) |
25 |
24
|
adantr |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ℤ ) ∧ 𝑀 ≠ 0 ) → 𝑀 ∈ ℤ ) |
26 |
23 25
|
rpexpcld |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ℤ ) ∧ 𝑀 ≠ 0 ) → ( 𝐵 ↑ 𝑀 ) ∈ ℝ+ ) |
27 |
26
|
rpcnne0d |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ℤ ) ∧ 𝑀 ≠ 0 ) → ( ( 𝐵 ↑ 𝑀 ) ∈ ℂ ∧ ( 𝐵 ↑ 𝑀 ) ≠ 0 ) ) |
28 |
|
eldifsn |
⊢ ( ( 𝐵 ↑ 𝑀 ) ∈ ( ℂ ∖ { 0 } ) ↔ ( ( 𝐵 ↑ 𝑀 ) ∈ ℂ ∧ ( 𝐵 ↑ 𝑀 ) ≠ 0 ) ) |
29 |
27 28
|
sylibr |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ℤ ) ∧ 𝑀 ≠ 0 ) → ( 𝐵 ↑ 𝑀 ) ∈ ( ℂ ∖ { 0 } ) ) |
30 |
|
logbval |
⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ ( 𝐵 ↑ 𝑀 ) ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐵 logb ( 𝐵 ↑ 𝑀 ) ) = ( ( log ‘ ( 𝐵 ↑ 𝑀 ) ) / ( log ‘ 𝐵 ) ) ) |
31 |
22 29 30
|
syl2anc |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ℤ ) ∧ 𝑀 ≠ 0 ) → ( 𝐵 logb ( 𝐵 ↑ 𝑀 ) ) = ( ( log ‘ ( 𝐵 ↑ 𝑀 ) ) / ( log ‘ 𝐵 ) ) ) |
32 |
24
|
zred |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ℤ ) → 𝑀 ∈ ℝ ) |
33 |
32
|
adantr |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ℤ ) ∧ 𝑀 ≠ 0 ) → 𝑀 ∈ ℝ ) |
34 |
23 33
|
logcxpd |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ℤ ) ∧ 𝑀 ≠ 0 ) → ( log ‘ ( 𝐵 ↑𝑐 𝑀 ) ) = ( 𝑀 · ( log ‘ 𝐵 ) ) ) |
35 |
18 19 25
|
cxpexpzd |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ℤ ) ∧ 𝑀 ≠ 0 ) → ( 𝐵 ↑𝑐 𝑀 ) = ( 𝐵 ↑ 𝑀 ) ) |
36 |
35
|
fveq2d |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ℤ ) ∧ 𝑀 ≠ 0 ) → ( log ‘ ( 𝐵 ↑𝑐 𝑀 ) ) = ( log ‘ ( 𝐵 ↑ 𝑀 ) ) ) |
37 |
34 36
|
eqtr3d |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ℤ ) ∧ 𝑀 ≠ 0 ) → ( 𝑀 · ( log ‘ 𝐵 ) ) = ( log ‘ ( 𝐵 ↑ 𝑀 ) ) ) |
38 |
37
|
oveq1d |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ℤ ) ∧ 𝑀 ≠ 0 ) → ( ( 𝑀 · ( log ‘ 𝐵 ) ) / ( log ‘ 𝐵 ) ) = ( ( log ‘ ( 𝐵 ↑ 𝑀 ) ) / ( log ‘ 𝐵 ) ) ) |
39 |
33
|
recnd |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ℤ ) ∧ 𝑀 ≠ 0 ) → 𝑀 ∈ ℂ ) |
40 |
18 19
|
logcld |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ℤ ) ∧ 𝑀 ≠ 0 ) → ( log ‘ 𝐵 ) ∈ ℂ ) |
41 |
|
logne0 |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) → ( log ‘ 𝐵 ) ≠ 0 ) |
42 |
23 20 41
|
syl2anc |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ℤ ) ∧ 𝑀 ≠ 0 ) → ( log ‘ 𝐵 ) ≠ 0 ) |
43 |
39 40 42
|
divcan4d |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ℤ ) ∧ 𝑀 ≠ 0 ) → ( ( 𝑀 · ( log ‘ 𝐵 ) ) / ( log ‘ 𝐵 ) ) = 𝑀 ) |
44 |
31 38 43
|
3eqtr2d |
⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ℤ ) ∧ 𝑀 ≠ 0 ) → ( 𝐵 logb ( 𝐵 ↑ 𝑀 ) ) = 𝑀 ) |
45 |
17 44
|
pm2.61dane |
⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ℤ ) → ( 𝐵 logb ( 𝐵 ↑ 𝑀 ) ) = 𝑀 ) |