Metamath Proof Explorer


Theorem nnltlem1

Description: Positive integer ordering relation. (Contributed by NM, 21-Jun-2005)

Ref Expression
Assertion nnltlem1 ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 < 𝑁𝑀 ≤ ( 𝑁 − 1 ) ) )

Proof

Step Hyp Ref Expression
1 nnz ( 𝑀 ∈ ℕ → 𝑀 ∈ ℤ )
2 nnz ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ )
3 zltlem1 ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 < 𝑁𝑀 ≤ ( 𝑁 − 1 ) ) )
4 1 2 3 syl2an ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 < 𝑁𝑀 ≤ ( 𝑁 − 1 ) ) )