Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( ∅ ·o 𝑥 ) = ( ∅ ·o ∅ ) ) |
2 |
1
|
eqeq1d |
⊢ ( 𝑥 = ∅ → ( ( ∅ ·o 𝑥 ) = ∅ ↔ ( ∅ ·o ∅ ) = ∅ ) ) |
3 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( ∅ ·o 𝑥 ) = ( ∅ ·o 𝑦 ) ) |
4 |
3
|
eqeq1d |
⊢ ( 𝑥 = 𝑦 → ( ( ∅ ·o 𝑥 ) = ∅ ↔ ( ∅ ·o 𝑦 ) = ∅ ) ) |
5 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( ∅ ·o 𝑥 ) = ( ∅ ·o suc 𝑦 ) ) |
6 |
5
|
eqeq1d |
⊢ ( 𝑥 = suc 𝑦 → ( ( ∅ ·o 𝑥 ) = ∅ ↔ ( ∅ ·o suc 𝑦 ) = ∅ ) ) |
7 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( ∅ ·o 𝑥 ) = ( ∅ ·o 𝐴 ) ) |
8 |
7
|
eqeq1d |
⊢ ( 𝑥 = 𝐴 → ( ( ∅ ·o 𝑥 ) = ∅ ↔ ( ∅ ·o 𝐴 ) = ∅ ) ) |
9 |
|
0elon |
⊢ ∅ ∈ On |
10 |
|
om0 |
⊢ ( ∅ ∈ On → ( ∅ ·o ∅ ) = ∅ ) |
11 |
9 10
|
ax-mp |
⊢ ( ∅ ·o ∅ ) = ∅ |
12 |
|
oveq1 |
⊢ ( ( ∅ ·o 𝑦 ) = ∅ → ( ( ∅ ·o 𝑦 ) +o ∅ ) = ( ∅ +o ∅ ) ) |
13 |
|
oa0 |
⊢ ( ∅ ∈ On → ( ∅ +o ∅ ) = ∅ ) |
14 |
9 13
|
ax-mp |
⊢ ( ∅ +o ∅ ) = ∅ |
15 |
12 14
|
eqtrdi |
⊢ ( ( ∅ ·o 𝑦 ) = ∅ → ( ( ∅ ·o 𝑦 ) +o ∅ ) = ∅ ) |
16 |
|
peano1 |
⊢ ∅ ∈ ω |
17 |
|
nnmsuc |
⊢ ( ( ∅ ∈ ω ∧ 𝑦 ∈ ω ) → ( ∅ ·o suc 𝑦 ) = ( ( ∅ ·o 𝑦 ) +o ∅ ) ) |
18 |
16 17
|
mpan |
⊢ ( 𝑦 ∈ ω → ( ∅ ·o suc 𝑦 ) = ( ( ∅ ·o 𝑦 ) +o ∅ ) ) |
19 |
18
|
eqeq1d |
⊢ ( 𝑦 ∈ ω → ( ( ∅ ·o suc 𝑦 ) = ∅ ↔ ( ( ∅ ·o 𝑦 ) +o ∅ ) = ∅ ) ) |
20 |
15 19
|
syl5ibr |
⊢ ( 𝑦 ∈ ω → ( ( ∅ ·o 𝑦 ) = ∅ → ( ∅ ·o suc 𝑦 ) = ∅ ) ) |
21 |
2 4 6 8 11 20
|
finds |
⊢ ( 𝐴 ∈ ω → ( ∅ ·o 𝐴 ) = ∅ ) |