Description: Multiply an element of _om by 1o . (Contributed by Mario Carneiro, 17-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | nnm1 | ⊢ ( 𝐴 ∈ ω → ( 𝐴 ·o 1o ) = 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o | ⊢ 1o = suc ∅ | |
2 | 1 | oveq2i | ⊢ ( 𝐴 ·o 1o ) = ( 𝐴 ·o suc ∅ ) |
3 | peano1 | ⊢ ∅ ∈ ω | |
4 | nnmsuc | ⊢ ( ( 𝐴 ∈ ω ∧ ∅ ∈ ω ) → ( 𝐴 ·o suc ∅ ) = ( ( 𝐴 ·o ∅ ) +o 𝐴 ) ) | |
5 | 3 4 | mpan2 | ⊢ ( 𝐴 ∈ ω → ( 𝐴 ·o suc ∅ ) = ( ( 𝐴 ·o ∅ ) +o 𝐴 ) ) |
6 | nnm0 | ⊢ ( 𝐴 ∈ ω → ( 𝐴 ·o ∅ ) = ∅ ) | |
7 | 6 | oveq1d | ⊢ ( 𝐴 ∈ ω → ( ( 𝐴 ·o ∅ ) +o 𝐴 ) = ( ∅ +o 𝐴 ) ) |
8 | nna0r | ⊢ ( 𝐴 ∈ ω → ( ∅ +o 𝐴 ) = 𝐴 ) | |
9 | 5 7 8 | 3eqtrd | ⊢ ( 𝐴 ∈ ω → ( 𝐴 ·o suc ∅ ) = 𝐴 ) |
10 | 2 9 | eqtrid | ⊢ ( 𝐴 ∈ ω → ( 𝐴 ·o 1o ) = 𝐴 ) |