Metamath Proof Explorer


Theorem nnm1

Description: Multiply an element of _om by 1o . (Contributed by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion nnm1 ( 𝐴 ∈ ω → ( 𝐴 ·o 1o ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 df-1o 1o = suc ∅
2 1 oveq2i ( 𝐴 ·o 1o ) = ( 𝐴 ·o suc ∅ )
3 peano1 ∅ ∈ ω
4 nnmsuc ( ( 𝐴 ∈ ω ∧ ∅ ∈ ω ) → ( 𝐴 ·o suc ∅ ) = ( ( 𝐴 ·o ∅ ) +o 𝐴 ) )
5 3 4 mpan2 ( 𝐴 ∈ ω → ( 𝐴 ·o suc ∅ ) = ( ( 𝐴 ·o ∅ ) +o 𝐴 ) )
6 nnm0 ( 𝐴 ∈ ω → ( 𝐴 ·o ∅ ) = ∅ )
7 6 oveq1d ( 𝐴 ∈ ω → ( ( 𝐴 ·o ∅ ) +o 𝐴 ) = ( ∅ +o 𝐴 ) )
8 nna0r ( 𝐴 ∈ ω → ( ∅ +o 𝐴 ) = 𝐴 )
9 5 7 8 3eqtrd ( 𝐴 ∈ ω → ( 𝐴 ·o suc ∅ ) = 𝐴 )
10 2 9 eqtrid ( 𝐴 ∈ ω → ( 𝐴 ·o 1o ) = 𝐴 )