Description: A positive integer minus 1 is a nonnegative integer. (Contributed by Jason Orendorff, 24-Jan-2007) (Revised by Mario Carneiro, 16-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnm1nn0 | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn1m1nn | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 = 1 ∨ ( 𝑁 − 1 ) ∈ ℕ ) ) | |
| 2 | oveq1 | ⊢ ( 𝑁 = 1 → ( 𝑁 − 1 ) = ( 1 − 1 ) ) | |
| 3 | 1m1e0 | ⊢ ( 1 − 1 ) = 0 | |
| 4 | 2 3 | eqtrdi | ⊢ ( 𝑁 = 1 → ( 𝑁 − 1 ) = 0 ) |
| 5 | 4 | orim1i | ⊢ ( ( 𝑁 = 1 ∨ ( 𝑁 − 1 ) ∈ ℕ ) → ( ( 𝑁 − 1 ) = 0 ∨ ( 𝑁 − 1 ) ∈ ℕ ) ) |
| 6 | 1 5 | syl | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 − 1 ) = 0 ∨ ( 𝑁 − 1 ) ∈ ℕ ) ) |
| 7 | 6 | orcomd | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 − 1 ) ∈ ℕ ∨ ( 𝑁 − 1 ) = 0 ) ) |
| 8 | elnn0 | ⊢ ( ( 𝑁 − 1 ) ∈ ℕ0 ↔ ( ( 𝑁 − 1 ) ∈ ℕ ∨ ( 𝑁 − 1 ) = 0 ) ) | |
| 9 | 7 8 | sylibr | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 ) |