Description: Multiply an element of _om by 2o . (Contributed by Scott Fenton, 18-Apr-2012) (Revised by Mario Carneiro, 17-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | nnm2 | ⊢ ( 𝐴 ∈ ω → ( 𝐴 ·o 2o ) = ( 𝐴 +o 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o | ⊢ 2o = suc 1o | |
2 | 1 | oveq2i | ⊢ ( 𝐴 ·o 2o ) = ( 𝐴 ·o suc 1o ) |
3 | 1onn | ⊢ 1o ∈ ω | |
4 | nnmsuc | ⊢ ( ( 𝐴 ∈ ω ∧ 1o ∈ ω ) → ( 𝐴 ·o suc 1o ) = ( ( 𝐴 ·o 1o ) +o 𝐴 ) ) | |
5 | 3 4 | mpan2 | ⊢ ( 𝐴 ∈ ω → ( 𝐴 ·o suc 1o ) = ( ( 𝐴 ·o 1o ) +o 𝐴 ) ) |
6 | nnm1 | ⊢ ( 𝐴 ∈ ω → ( 𝐴 ·o 1o ) = 𝐴 ) | |
7 | 6 | oveq1d | ⊢ ( 𝐴 ∈ ω → ( ( 𝐴 ·o 1o ) +o 𝐴 ) = ( 𝐴 +o 𝐴 ) ) |
8 | 5 7 | eqtrd | ⊢ ( 𝐴 ∈ ω → ( 𝐴 ·o suc 1o ) = ( 𝐴 +o 𝐴 ) ) |
9 | 2 8 | eqtrid | ⊢ ( 𝐴 ∈ ω → ( 𝐴 ·o 2o ) = ( 𝐴 +o 𝐴 ) ) |