Metamath Proof Explorer


Theorem nnm2

Description: Multiply an element of _om by 2o . (Contributed by Scott Fenton, 18-Apr-2012) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion nnm2 ( 𝐴 ∈ ω → ( 𝐴 ·o 2o ) = ( 𝐴 +o 𝐴 ) )

Proof

Step Hyp Ref Expression
1 df-2o 2o = suc 1o
2 1 oveq2i ( 𝐴 ·o 2o ) = ( 𝐴 ·o suc 1o )
3 1onn 1o ∈ ω
4 nnmsuc ( ( 𝐴 ∈ ω ∧ 1o ∈ ω ) → ( 𝐴 ·o suc 1o ) = ( ( 𝐴 ·o 1o ) +o 𝐴 ) )
5 3 4 mpan2 ( 𝐴 ∈ ω → ( 𝐴 ·o suc 1o ) = ( ( 𝐴 ·o 1o ) +o 𝐴 ) )
6 nnm1 ( 𝐴 ∈ ω → ( 𝐴 ·o 1o ) = 𝐴 )
7 6 oveq1d ( 𝐴 ∈ ω → ( ( 𝐴 ·o 1o ) +o 𝐴 ) = ( 𝐴 +o 𝐴 ) )
8 5 7 eqtrd ( 𝐴 ∈ ω → ( 𝐴 ·o suc 1o ) = ( 𝐴 +o 𝐴 ) )
9 2 8 eqtrid ( 𝐴 ∈ ω → ( 𝐴 ·o 2o ) = ( 𝐴 +o 𝐴 ) )