Metamath Proof Explorer


Theorem nnmcan

Description: Cancellation law for multiplication of natural numbers. (Contributed by NM, 26-Oct-1995) (Revised by Mario Carneiro, 15-Nov-2014)

Ref Expression
Assertion nnmcan ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) ↔ 𝐵 = 𝐶 ) )

Proof

Step Hyp Ref Expression
1 3anrot ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ↔ ( 𝐵 ∈ ω ∧ 𝐶 ∈ ω ∧ 𝐴 ∈ ω ) )
2 nnmword ( ( ( 𝐵 ∈ ω ∧ 𝐶 ∈ ω ∧ 𝐴 ∈ ω ) ∧ ∅ ∈ 𝐴 ) → ( 𝐵𝐶 ↔ ( 𝐴 ·o 𝐵 ) ⊆ ( 𝐴 ·o 𝐶 ) ) )
3 1 2 sylanb ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐴 ) → ( 𝐵𝐶 ↔ ( 𝐴 ·o 𝐵 ) ⊆ ( 𝐴 ·o 𝐶 ) ) )
4 3anrev ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ↔ ( 𝐶 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) )
5 nnmword ( ( ( 𝐶 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) ∧ ∅ ∈ 𝐴 ) → ( 𝐶𝐵 ↔ ( 𝐴 ·o 𝐶 ) ⊆ ( 𝐴 ·o 𝐵 ) ) )
6 4 5 sylanb ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐴 ) → ( 𝐶𝐵 ↔ ( 𝐴 ·o 𝐶 ) ⊆ ( 𝐴 ·o 𝐵 ) ) )
7 3 6 anbi12d ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝐵𝐶𝐶𝐵 ) ↔ ( ( 𝐴 ·o 𝐵 ) ⊆ ( 𝐴 ·o 𝐶 ) ∧ ( 𝐴 ·o 𝐶 ) ⊆ ( 𝐴 ·o 𝐵 ) ) ) )
8 7 bicomd ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐴 ) → ( ( ( 𝐴 ·o 𝐵 ) ⊆ ( 𝐴 ·o 𝐶 ) ∧ ( 𝐴 ·o 𝐶 ) ⊆ ( 𝐴 ·o 𝐵 ) ) ↔ ( 𝐵𝐶𝐶𝐵 ) ) )
9 eqss ( ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) ↔ ( ( 𝐴 ·o 𝐵 ) ⊆ ( 𝐴 ·o 𝐶 ) ∧ ( 𝐴 ·o 𝐶 ) ⊆ ( 𝐴 ·o 𝐵 ) ) )
10 eqss ( 𝐵 = 𝐶 ↔ ( 𝐵𝐶𝐶𝐵 ) )
11 8 9 10 3bitr4g ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) ↔ 𝐵 = 𝐶 ) )