Step |
Hyp |
Ref |
Expression |
1 |
|
3anrot |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ↔ ( 𝐵 ∈ ω ∧ 𝐶 ∈ ω ∧ 𝐴 ∈ ω ) ) |
2 |
|
nnmword |
⊢ ( ( ( 𝐵 ∈ ω ∧ 𝐶 ∈ ω ∧ 𝐴 ∈ ω ) ∧ ∅ ∈ 𝐴 ) → ( 𝐵 ⊆ 𝐶 ↔ ( 𝐴 ·o 𝐵 ) ⊆ ( 𝐴 ·o 𝐶 ) ) ) |
3 |
1 2
|
sylanb |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐴 ) → ( 𝐵 ⊆ 𝐶 ↔ ( 𝐴 ·o 𝐵 ) ⊆ ( 𝐴 ·o 𝐶 ) ) ) |
4 |
|
3anrev |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ↔ ( 𝐶 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) ) |
5 |
|
nnmword |
⊢ ( ( ( 𝐶 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) ∧ ∅ ∈ 𝐴 ) → ( 𝐶 ⊆ 𝐵 ↔ ( 𝐴 ·o 𝐶 ) ⊆ ( 𝐴 ·o 𝐵 ) ) ) |
6 |
4 5
|
sylanb |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐴 ) → ( 𝐶 ⊆ 𝐵 ↔ ( 𝐴 ·o 𝐶 ) ⊆ ( 𝐴 ·o 𝐵 ) ) ) |
7 |
3 6
|
anbi12d |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) ↔ ( ( 𝐴 ·o 𝐵 ) ⊆ ( 𝐴 ·o 𝐶 ) ∧ ( 𝐴 ·o 𝐶 ) ⊆ ( 𝐴 ·o 𝐵 ) ) ) ) |
8 |
7
|
bicomd |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐴 ) → ( ( ( 𝐴 ·o 𝐵 ) ⊆ ( 𝐴 ·o 𝐶 ) ∧ ( 𝐴 ·o 𝐶 ) ⊆ ( 𝐴 ·o 𝐵 ) ) ↔ ( 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) ) ) |
9 |
|
eqss |
⊢ ( ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) ↔ ( ( 𝐴 ·o 𝐵 ) ⊆ ( 𝐴 ·o 𝐶 ) ∧ ( 𝐴 ·o 𝐶 ) ⊆ ( 𝐴 ·o 𝐵 ) ) ) |
10 |
|
eqss |
⊢ ( 𝐵 = 𝐶 ↔ ( 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) ) |
11 |
8 9 10
|
3bitr4g |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐴 ) → ( ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐶 ) ↔ 𝐵 = 𝐶 ) ) |