Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o 𝐵 ) ) |
2 |
1
|
eleq1d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ·o 𝑥 ) ∈ ω ↔ ( 𝐴 ·o 𝐵 ) ∈ ω ) ) |
3 |
2
|
imbi2d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ∈ ω → ( 𝐴 ·o 𝑥 ) ∈ ω ) ↔ ( 𝐴 ∈ ω → ( 𝐴 ·o 𝐵 ) ∈ ω ) ) ) |
4 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o ∅ ) ) |
5 |
4
|
eleq1d |
⊢ ( 𝑥 = ∅ → ( ( 𝐴 ·o 𝑥 ) ∈ ω ↔ ( 𝐴 ·o ∅ ) ∈ ω ) ) |
6 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o 𝑦 ) ) |
7 |
6
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ·o 𝑥 ) ∈ ω ↔ ( 𝐴 ·o 𝑦 ) ∈ ω ) ) |
8 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o suc 𝑦 ) ) |
9 |
8
|
eleq1d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 ·o 𝑥 ) ∈ ω ↔ ( 𝐴 ·o suc 𝑦 ) ∈ ω ) ) |
10 |
|
nnm0 |
⊢ ( 𝐴 ∈ ω → ( 𝐴 ·o ∅ ) = ∅ ) |
11 |
|
peano1 |
⊢ ∅ ∈ ω |
12 |
10 11
|
eqeltrdi |
⊢ ( 𝐴 ∈ ω → ( 𝐴 ·o ∅ ) ∈ ω ) |
13 |
|
nnacl |
⊢ ( ( ( 𝐴 ·o 𝑦 ) ∈ ω ∧ 𝐴 ∈ ω ) → ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ∈ ω ) |
14 |
13
|
expcom |
⊢ ( 𝐴 ∈ ω → ( ( 𝐴 ·o 𝑦 ) ∈ ω → ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ∈ ω ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 ·o 𝑦 ) ∈ ω → ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ∈ ω ) ) |
16 |
|
nnmsuc |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 ·o suc 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) |
17 |
16
|
eleq1d |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 ·o suc 𝑦 ) ∈ ω ↔ ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ∈ ω ) ) |
18 |
15 17
|
sylibrd |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 ·o 𝑦 ) ∈ ω → ( 𝐴 ·o suc 𝑦 ) ∈ ω ) ) |
19 |
18
|
expcom |
⊢ ( 𝑦 ∈ ω → ( 𝐴 ∈ ω → ( ( 𝐴 ·o 𝑦 ) ∈ ω → ( 𝐴 ·o suc 𝑦 ) ∈ ω ) ) ) |
20 |
5 7 9 12 19
|
finds2 |
⊢ ( 𝑥 ∈ ω → ( 𝐴 ∈ ω → ( 𝐴 ·o 𝑥 ) ∈ ω ) ) |
21 |
3 20
|
vtoclga |
⊢ ( 𝐵 ∈ ω → ( 𝐴 ∈ ω → ( 𝐴 ·o 𝐵 ) ∈ ω ) ) |
22 |
21
|
impcom |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ·o 𝐵 ) ∈ ω ) |