Step |
Hyp |
Ref |
Expression |
1 |
|
nnmordi |
⊢ ( ( ( 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 ∈ 𝐵 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) |
2 |
1
|
ex |
⊢ ( ( 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ∅ ∈ 𝐶 → ( 𝐴 ∈ 𝐵 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) |
3 |
2
|
impcomd |
⊢ ( ( 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐶 ) → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) |
4 |
3
|
3adant1 |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐶 ) → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) |
5 |
|
ne0i |
⊢ ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) → ( 𝐶 ·o 𝐵 ) ≠ ∅ ) |
6 |
|
nnm0r |
⊢ ( 𝐵 ∈ ω → ( ∅ ·o 𝐵 ) = ∅ ) |
7 |
|
oveq1 |
⊢ ( 𝐶 = ∅ → ( 𝐶 ·o 𝐵 ) = ( ∅ ·o 𝐵 ) ) |
8 |
7
|
eqeq1d |
⊢ ( 𝐶 = ∅ → ( ( 𝐶 ·o 𝐵 ) = ∅ ↔ ( ∅ ·o 𝐵 ) = ∅ ) ) |
9 |
6 8
|
syl5ibrcom |
⊢ ( 𝐵 ∈ ω → ( 𝐶 = ∅ → ( 𝐶 ·o 𝐵 ) = ∅ ) ) |
10 |
9
|
necon3d |
⊢ ( 𝐵 ∈ ω → ( ( 𝐶 ·o 𝐵 ) ≠ ∅ → 𝐶 ≠ ∅ ) ) |
11 |
5 10
|
syl5 |
⊢ ( 𝐵 ∈ ω → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) → 𝐶 ≠ ∅ ) ) |
12 |
11
|
adantr |
⊢ ( ( 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) → 𝐶 ≠ ∅ ) ) |
13 |
|
nnord |
⊢ ( 𝐶 ∈ ω → Ord 𝐶 ) |
14 |
|
ord0eln0 |
⊢ ( Ord 𝐶 → ( ∅ ∈ 𝐶 ↔ 𝐶 ≠ ∅ ) ) |
15 |
13 14
|
syl |
⊢ ( 𝐶 ∈ ω → ( ∅ ∈ 𝐶 ↔ 𝐶 ≠ ∅ ) ) |
16 |
15
|
adantl |
⊢ ( ( 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ∅ ∈ 𝐶 ↔ 𝐶 ≠ ∅ ) ) |
17 |
12 16
|
sylibrd |
⊢ ( ( 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) → ∅ ∈ 𝐶 ) ) |
18 |
17
|
3adant1 |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) → ∅ ∈ 𝐶 ) ) |
19 |
|
oveq2 |
⊢ ( 𝐴 = 𝐵 → ( 𝐶 ·o 𝐴 ) = ( 𝐶 ·o 𝐵 ) ) |
20 |
19
|
a1i |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 = 𝐵 → ( 𝐶 ·o 𝐴 ) = ( 𝐶 ·o 𝐵 ) ) ) |
21 |
|
nnmordi |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐵 ∈ 𝐴 → ( 𝐶 ·o 𝐵 ) ∈ ( 𝐶 ·o 𝐴 ) ) ) |
22 |
21
|
3adantl2 |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐵 ∈ 𝐴 → ( 𝐶 ·o 𝐵 ) ∈ ( 𝐶 ·o 𝐴 ) ) ) |
23 |
20 22
|
orim12d |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) → ( ( 𝐶 ·o 𝐴 ) = ( 𝐶 ·o 𝐵 ) ∨ ( 𝐶 ·o 𝐵 ) ∈ ( 𝐶 ·o 𝐴 ) ) ) ) |
24 |
23
|
con3d |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( ¬ ( ( 𝐶 ·o 𝐴 ) = ( 𝐶 ·o 𝐵 ) ∨ ( 𝐶 ·o 𝐵 ) ∈ ( 𝐶 ·o 𝐴 ) ) → ¬ ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ) ) |
25 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → 𝐶 ∈ ω ) |
26 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → 𝐴 ∈ ω ) |
27 |
|
nnmcl |
⊢ ( ( 𝐶 ∈ ω ∧ 𝐴 ∈ ω ) → ( 𝐶 ·o 𝐴 ) ∈ ω ) |
28 |
25 26 27
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐶 ·o 𝐴 ) ∈ ω ) |
29 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → 𝐵 ∈ ω ) |
30 |
|
nnmcl |
⊢ ( ( 𝐶 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐶 ·o 𝐵 ) ∈ ω ) |
31 |
25 29 30
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐶 ·o 𝐵 ) ∈ ω ) |
32 |
|
nnord |
⊢ ( ( 𝐶 ·o 𝐴 ) ∈ ω → Ord ( 𝐶 ·o 𝐴 ) ) |
33 |
|
nnord |
⊢ ( ( 𝐶 ·o 𝐵 ) ∈ ω → Ord ( 𝐶 ·o 𝐵 ) ) |
34 |
|
ordtri2 |
⊢ ( ( Ord ( 𝐶 ·o 𝐴 ) ∧ Ord ( 𝐶 ·o 𝐵 ) ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ↔ ¬ ( ( 𝐶 ·o 𝐴 ) = ( 𝐶 ·o 𝐵 ) ∨ ( 𝐶 ·o 𝐵 ) ∈ ( 𝐶 ·o 𝐴 ) ) ) ) |
35 |
32 33 34
|
syl2an |
⊢ ( ( ( 𝐶 ·o 𝐴 ) ∈ ω ∧ ( 𝐶 ·o 𝐵 ) ∈ ω ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ↔ ¬ ( ( 𝐶 ·o 𝐴 ) = ( 𝐶 ·o 𝐵 ) ∨ ( 𝐶 ·o 𝐵 ) ∈ ( 𝐶 ·o 𝐴 ) ) ) ) |
36 |
28 31 35
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ↔ ¬ ( ( 𝐶 ·o 𝐴 ) = ( 𝐶 ·o 𝐵 ) ∨ ( 𝐶 ·o 𝐵 ) ∈ ( 𝐶 ·o 𝐴 ) ) ) ) |
37 |
|
nnord |
⊢ ( 𝐴 ∈ ω → Ord 𝐴 ) |
38 |
|
nnord |
⊢ ( 𝐵 ∈ ω → Ord 𝐵 ) |
39 |
|
ordtri2 |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ∈ 𝐵 ↔ ¬ ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ) ) |
40 |
37 38 39
|
syl2an |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ∈ 𝐵 ↔ ¬ ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ) ) |
41 |
26 29 40
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 ∈ 𝐵 ↔ ¬ ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ) ) |
42 |
24 36 41
|
3imtr4d |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) → 𝐴 ∈ 𝐵 ) ) |
43 |
42
|
ex |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ∅ ∈ 𝐶 → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) → 𝐴 ∈ 𝐵 ) ) ) |
44 |
43
|
com23 |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) → ( ∅ ∈ 𝐶 → 𝐴 ∈ 𝐵 ) ) ) |
45 |
18 44
|
mpdd |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) → 𝐴 ∈ 𝐵 ) ) |
46 |
45 18
|
jcad |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) → ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐶 ) ) ) |
47 |
4 46
|
impbid |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐶 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) |