Metamath Proof Explorer


Theorem nnmordi

Description: Ordering property of multiplication. Half of Proposition 8.19 of TakeutiZaring p. 63, limited to natural numbers. (Contributed by NM, 18-Sep-1995) (Revised by Mario Carneiro, 15-Nov-2014)

Ref Expression
Assertion nnmordi ( ( ( 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴𝐵 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 elnn ( ( 𝐴𝐵𝐵 ∈ ω ) → 𝐴 ∈ ω )
2 1 expcom ( 𝐵 ∈ ω → ( 𝐴𝐵𝐴 ∈ ω ) )
3 eleq2 ( 𝑥 = 𝐵 → ( 𝐴𝑥𝐴𝐵 ) )
4 oveq2 ( 𝑥 = 𝐵 → ( 𝐶 ·o 𝑥 ) = ( 𝐶 ·o 𝐵 ) )
5 4 eleq2d ( 𝑥 = 𝐵 → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) )
6 3 5 imbi12d ( 𝑥 = 𝐵 → ( ( 𝐴𝑥 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ) ↔ ( 𝐴𝐵 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) )
7 6 imbi2d ( 𝑥 = 𝐵 → ( ( ( ( 𝐴 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴𝑥 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ) ) ↔ ( ( ( 𝐴 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴𝐵 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) )
8 eleq2 ( 𝑥 = ∅ → ( 𝐴𝑥𝐴 ∈ ∅ ) )
9 oveq2 ( 𝑥 = ∅ → ( 𝐶 ·o 𝑥 ) = ( 𝐶 ·o ∅ ) )
10 9 eleq2d ( 𝑥 = ∅ → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o ∅ ) ) )
11 8 10 imbi12d ( 𝑥 = ∅ → ( ( 𝐴𝑥 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ) ↔ ( 𝐴 ∈ ∅ → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o ∅ ) ) ) )
12 eleq2 ( 𝑥 = 𝑦 → ( 𝐴𝑥𝐴𝑦 ) )
13 oveq2 ( 𝑥 = 𝑦 → ( 𝐶 ·o 𝑥 ) = ( 𝐶 ·o 𝑦 ) )
14 13 eleq2d ( 𝑥 = 𝑦 → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) )
15 12 14 imbi12d ( 𝑥 = 𝑦 → ( ( 𝐴𝑥 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ) ↔ ( 𝐴𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) )
16 eleq2 ( 𝑥 = suc 𝑦 → ( 𝐴𝑥𝐴 ∈ suc 𝑦 ) )
17 oveq2 ( 𝑥 = suc 𝑦 → ( 𝐶 ·o 𝑥 ) = ( 𝐶 ·o suc 𝑦 ) )
18 17 eleq2d ( 𝑥 = suc 𝑦 → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ) )
19 16 18 imbi12d ( 𝑥 = suc 𝑦 → ( ( 𝐴𝑥 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ) ↔ ( 𝐴 ∈ suc 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ) ) )
20 noel ¬ 𝐴 ∈ ∅
21 20 pm2.21i ( 𝐴 ∈ ∅ → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o ∅ ) )
22 21 a1i ( ( ( 𝐴 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 ∈ ∅ → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o ∅ ) ) )
23 elsuci ( 𝐴 ∈ suc 𝑦 → ( 𝐴𝑦𝐴 = 𝑦 ) )
24 nnmcl ( ( 𝐶 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐶 ·o 𝑦 ) ∈ ω )
25 simpl ( ( 𝐶 ∈ ω ∧ 𝑦 ∈ ω ) → 𝐶 ∈ ω )
26 24 25 jca ( ( 𝐶 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐶 ·o 𝑦 ) ∈ ω ∧ 𝐶 ∈ ω ) )
27 nnaword1 ( ( ( 𝐶 ·o 𝑦 ) ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐶 ·o 𝑦 ) ⊆ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) )
28 27 sseld ( ( ( 𝐶 ·o 𝑦 ) ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) )
29 28 imim2d ( ( ( 𝐶 ·o 𝑦 ) ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐴𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) → ( 𝐴𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) )
30 29 imp ( ( ( ( 𝐶 ·o 𝑦 ) ∈ ω ∧ 𝐶 ∈ ω ) ∧ ( 𝐴𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) → ( 𝐴𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) )
31 30 adantrl ( ( ( ( 𝐶 ·o 𝑦 ) ∈ ω ∧ 𝐶 ∈ ω ) ∧ ( ∅ ∈ 𝐶 ∧ ( 𝐴𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) ) → ( 𝐴𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) )
32 nna0 ( ( 𝐶 ·o 𝑦 ) ∈ ω → ( ( 𝐶 ·o 𝑦 ) +o ∅ ) = ( 𝐶 ·o 𝑦 ) )
33 32 ad2antrr ( ( ( ( 𝐶 ·o 𝑦 ) ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( ( 𝐶 ·o 𝑦 ) +o ∅ ) = ( 𝐶 ·o 𝑦 ) )
34 nnaordi ( ( 𝐶 ∈ ω ∧ ( 𝐶 ·o 𝑦 ) ∈ ω ) → ( ∅ ∈ 𝐶 → ( ( 𝐶 ·o 𝑦 ) +o ∅ ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) )
35 34 ancoms ( ( ( 𝐶 ·o 𝑦 ) ∈ ω ∧ 𝐶 ∈ ω ) → ( ∅ ∈ 𝐶 → ( ( 𝐶 ·o 𝑦 ) +o ∅ ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) )
36 35 imp ( ( ( ( 𝐶 ·o 𝑦 ) ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( ( 𝐶 ·o 𝑦 ) +o ∅ ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) )
37 33 36 eqeltrrd ( ( ( ( 𝐶 ·o 𝑦 ) ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐶 ·o 𝑦 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) )
38 oveq2 ( 𝐴 = 𝑦 → ( 𝐶 ·o 𝐴 ) = ( 𝐶 ·o 𝑦 ) )
39 38 eleq1d ( 𝐴 = 𝑦 → ( ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ↔ ( 𝐶 ·o 𝑦 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) )
40 37 39 syl5ibrcom ( ( ( ( 𝐶 ·o 𝑦 ) ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 = 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) )
41 40 adantrr ( ( ( ( 𝐶 ·o 𝑦 ) ∈ ω ∧ 𝐶 ∈ ω ) ∧ ( ∅ ∈ 𝐶 ∧ ( 𝐴𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) ) → ( 𝐴 = 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) )
42 31 41 jaod ( ( ( ( 𝐶 ·o 𝑦 ) ∈ ω ∧ 𝐶 ∈ ω ) ∧ ( ∅ ∈ 𝐶 ∧ ( 𝐴𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) ) → ( ( 𝐴𝑦𝐴 = 𝑦 ) → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) )
43 26 42 sylan ( ( ( 𝐶 ∈ ω ∧ 𝑦 ∈ ω ) ∧ ( ∅ ∈ 𝐶 ∧ ( 𝐴𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) ) → ( ( 𝐴𝑦𝐴 = 𝑦 ) → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) )
44 23 43 syl5 ( ( ( 𝐶 ∈ ω ∧ 𝑦 ∈ ω ) ∧ ( ∅ ∈ 𝐶 ∧ ( 𝐴𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) ) → ( 𝐴 ∈ suc 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) )
45 nnmsuc ( ( 𝐶 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐶 ·o suc 𝑦 ) = ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) )
46 45 eleq2d ( ( 𝐶 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) )
47 46 adantr ( ( ( 𝐶 ∈ ω ∧ 𝑦 ∈ ω ) ∧ ( ∅ ∈ 𝐶 ∧ ( 𝐴𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) )
48 44 47 sylibrd ( ( ( 𝐶 ∈ ω ∧ 𝑦 ∈ ω ) ∧ ( ∅ ∈ 𝐶 ∧ ( 𝐴𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) ) → ( 𝐴 ∈ suc 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ) )
49 48 exp43 ( 𝐶 ∈ ω → ( 𝑦 ∈ ω → ( ∅ ∈ 𝐶 → ( ( 𝐴𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) → ( 𝐴 ∈ suc 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ) ) ) ) )
50 49 com12 ( 𝑦 ∈ ω → ( 𝐶 ∈ ω → ( ∅ ∈ 𝐶 → ( ( 𝐴𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) → ( 𝐴 ∈ suc 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ) ) ) ) )
51 50 adantld ( 𝑦 ∈ ω → ( ( 𝐴 ∈ ω ∧ 𝐶 ∈ ω ) → ( ∅ ∈ 𝐶 → ( ( 𝐴𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) → ( 𝐴 ∈ suc 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ) ) ) ) )
52 51 impd ( 𝑦 ∈ ω → ( ( ( 𝐴 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( ( 𝐴𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) → ( 𝐴 ∈ suc 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ) ) ) )
53 11 15 19 22 52 finds2 ( 𝑥 ∈ ω → ( ( ( 𝐴 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴𝑥 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ) ) )
54 7 53 vtoclga ( 𝐵 ∈ ω → ( ( ( 𝐴 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴𝐵 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) )
55 54 com23 ( 𝐵 ∈ ω → ( 𝐴𝐵 → ( ( ( 𝐴 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) )
56 55 exp4a ( 𝐵 ∈ ω → ( 𝐴𝐵 → ( ( 𝐴 ∈ ω ∧ 𝐶 ∈ ω ) → ( ∅ ∈ 𝐶 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) )
57 56 exp4a ( 𝐵 ∈ ω → ( 𝐴𝐵 → ( 𝐴 ∈ ω → ( 𝐶 ∈ ω → ( ∅ ∈ 𝐶 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) ) )
58 2 57 mpdd ( 𝐵 ∈ ω → ( 𝐴𝐵 → ( 𝐶 ∈ ω → ( ∅ ∈ 𝐶 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) )
59 58 com34 ( 𝐵 ∈ ω → ( 𝐴𝐵 → ( ∅ ∈ 𝐶 → ( 𝐶 ∈ ω → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) )
60 59 com24 ( 𝐵 ∈ ω → ( 𝐶 ∈ ω → ( ∅ ∈ 𝐶 → ( 𝐴𝐵 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) )
61 60 imp31 ( ( ( 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴𝐵 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) )