Step |
Hyp |
Ref |
Expression |
1 |
|
elnn |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ ω ) → 𝐴 ∈ ω ) |
2 |
1
|
expcom |
⊢ ( 𝐵 ∈ ω → ( 𝐴 ∈ 𝐵 → 𝐴 ∈ ω ) ) |
3 |
|
eleq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵 ) ) |
4 |
|
oveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐶 ·o 𝑥 ) = ( 𝐶 ·o 𝐵 ) ) |
5 |
4
|
eleq2d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) |
6 |
3 5
|
imbi12d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ∈ 𝑥 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ) ↔ ( 𝐴 ∈ 𝐵 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) |
7 |
6
|
imbi2d |
⊢ ( 𝑥 = 𝐵 → ( ( ( ( 𝐴 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 ∈ 𝑥 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ) ) ↔ ( ( ( 𝐴 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 ∈ 𝐵 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) ) |
8 |
|
eleq2 |
⊢ ( 𝑥 = ∅ → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ ∅ ) ) |
9 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝐶 ·o 𝑥 ) = ( 𝐶 ·o ∅ ) ) |
10 |
9
|
eleq2d |
⊢ ( 𝑥 = ∅ → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o ∅ ) ) ) |
11 |
8 10
|
imbi12d |
⊢ ( 𝑥 = ∅ → ( ( 𝐴 ∈ 𝑥 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ) ↔ ( 𝐴 ∈ ∅ → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o ∅ ) ) ) ) |
12 |
|
eleq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦 ) ) |
13 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐶 ·o 𝑥 ) = ( 𝐶 ·o 𝑦 ) ) |
14 |
13
|
eleq2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) |
15 |
12 14
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ∈ 𝑥 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ) ↔ ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) ) |
16 |
|
eleq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ suc 𝑦 ) ) |
17 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐶 ·o 𝑥 ) = ( 𝐶 ·o suc 𝑦 ) ) |
18 |
17
|
eleq2d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ) ) |
19 |
16 18
|
imbi12d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 ∈ 𝑥 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ) ↔ ( 𝐴 ∈ suc 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ) ) ) |
20 |
|
noel |
⊢ ¬ 𝐴 ∈ ∅ |
21 |
20
|
pm2.21i |
⊢ ( 𝐴 ∈ ∅ → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o ∅ ) ) |
22 |
21
|
a1i |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 ∈ ∅ → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o ∅ ) ) ) |
23 |
|
elsuci |
⊢ ( 𝐴 ∈ suc 𝑦 → ( 𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ) ) |
24 |
|
nnmcl |
⊢ ( ( 𝐶 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐶 ·o 𝑦 ) ∈ ω ) |
25 |
|
simpl |
⊢ ( ( 𝐶 ∈ ω ∧ 𝑦 ∈ ω ) → 𝐶 ∈ ω ) |
26 |
24 25
|
jca |
⊢ ( ( 𝐶 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐶 ·o 𝑦 ) ∈ ω ∧ 𝐶 ∈ ω ) ) |
27 |
|
nnaword1 |
⊢ ( ( ( 𝐶 ·o 𝑦 ) ∈ ω ∧ 𝐶 ∈ ω ) → ( 𝐶 ·o 𝑦 ) ⊆ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) |
28 |
27
|
sseld |
⊢ ( ( ( 𝐶 ·o 𝑦 ) ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
29 |
28
|
imim2d |
⊢ ( ( ( 𝐶 ·o 𝑦 ) ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) → ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) ) |
30 |
29
|
imp |
⊢ ( ( ( ( 𝐶 ·o 𝑦 ) ∈ ω ∧ 𝐶 ∈ ω ) ∧ ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) → ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
31 |
30
|
adantrl |
⊢ ( ( ( ( 𝐶 ·o 𝑦 ) ∈ ω ∧ 𝐶 ∈ ω ) ∧ ( ∅ ∈ 𝐶 ∧ ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) ) → ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
32 |
|
nna0 |
⊢ ( ( 𝐶 ·o 𝑦 ) ∈ ω → ( ( 𝐶 ·o 𝑦 ) +o ∅ ) = ( 𝐶 ·o 𝑦 ) ) |
33 |
32
|
ad2antrr |
⊢ ( ( ( ( 𝐶 ·o 𝑦 ) ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( ( 𝐶 ·o 𝑦 ) +o ∅ ) = ( 𝐶 ·o 𝑦 ) ) |
34 |
|
nnaordi |
⊢ ( ( 𝐶 ∈ ω ∧ ( 𝐶 ·o 𝑦 ) ∈ ω ) → ( ∅ ∈ 𝐶 → ( ( 𝐶 ·o 𝑦 ) +o ∅ ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
35 |
34
|
ancoms |
⊢ ( ( ( 𝐶 ·o 𝑦 ) ∈ ω ∧ 𝐶 ∈ ω ) → ( ∅ ∈ 𝐶 → ( ( 𝐶 ·o 𝑦 ) +o ∅ ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
36 |
35
|
imp |
⊢ ( ( ( ( 𝐶 ·o 𝑦 ) ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( ( 𝐶 ·o 𝑦 ) +o ∅ ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) |
37 |
33 36
|
eqeltrrd |
⊢ ( ( ( ( 𝐶 ·o 𝑦 ) ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐶 ·o 𝑦 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) |
38 |
|
oveq2 |
⊢ ( 𝐴 = 𝑦 → ( 𝐶 ·o 𝐴 ) = ( 𝐶 ·o 𝑦 ) ) |
39 |
38
|
eleq1d |
⊢ ( 𝐴 = 𝑦 → ( ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ↔ ( 𝐶 ·o 𝑦 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
40 |
37 39
|
syl5ibrcom |
⊢ ( ( ( ( 𝐶 ·o 𝑦 ) ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 = 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
41 |
40
|
adantrr |
⊢ ( ( ( ( 𝐶 ·o 𝑦 ) ∈ ω ∧ 𝐶 ∈ ω ) ∧ ( ∅ ∈ 𝐶 ∧ ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) ) → ( 𝐴 = 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
42 |
31 41
|
jaod |
⊢ ( ( ( ( 𝐶 ·o 𝑦 ) ∈ ω ∧ 𝐶 ∈ ω ) ∧ ( ∅ ∈ 𝐶 ∧ ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) ) → ( ( 𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ) → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
43 |
26 42
|
sylan |
⊢ ( ( ( 𝐶 ∈ ω ∧ 𝑦 ∈ ω ) ∧ ( ∅ ∈ 𝐶 ∧ ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) ) → ( ( 𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ) → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
44 |
23 43
|
syl5 |
⊢ ( ( ( 𝐶 ∈ ω ∧ 𝑦 ∈ ω ) ∧ ( ∅ ∈ 𝐶 ∧ ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) ) → ( 𝐴 ∈ suc 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
45 |
|
nnmsuc |
⊢ ( ( 𝐶 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐶 ·o suc 𝑦 ) = ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) |
46 |
45
|
eleq2d |
⊢ ( ( 𝐶 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
47 |
46
|
adantr |
⊢ ( ( ( 𝐶 ∈ ω ∧ 𝑦 ∈ ω ) ∧ ( ∅ ∈ 𝐶 ∧ ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( ( 𝐶 ·o 𝑦 ) +o 𝐶 ) ) ) |
48 |
44 47
|
sylibrd |
⊢ ( ( ( 𝐶 ∈ ω ∧ 𝑦 ∈ ω ) ∧ ( ∅ ∈ 𝐶 ∧ ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) ) ) → ( 𝐴 ∈ suc 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ) ) |
49 |
48
|
exp43 |
⊢ ( 𝐶 ∈ ω → ( 𝑦 ∈ ω → ( ∅ ∈ 𝐶 → ( ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) → ( 𝐴 ∈ suc 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ) ) ) ) ) |
50 |
49
|
com12 |
⊢ ( 𝑦 ∈ ω → ( 𝐶 ∈ ω → ( ∅ ∈ 𝐶 → ( ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) → ( 𝐴 ∈ suc 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ) ) ) ) ) |
51 |
50
|
adantld |
⊢ ( 𝑦 ∈ ω → ( ( 𝐴 ∈ ω ∧ 𝐶 ∈ ω ) → ( ∅ ∈ 𝐶 → ( ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) → ( 𝐴 ∈ suc 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ) ) ) ) ) |
52 |
51
|
impd |
⊢ ( 𝑦 ∈ ω → ( ( ( 𝐴 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( ( 𝐴 ∈ 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑦 ) ) → ( 𝐴 ∈ suc 𝑦 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o suc 𝑦 ) ) ) ) ) |
53 |
11 15 19 22 52
|
finds2 |
⊢ ( 𝑥 ∈ ω → ( ( ( 𝐴 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 ∈ 𝑥 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝑥 ) ) ) ) |
54 |
7 53
|
vtoclga |
⊢ ( 𝐵 ∈ ω → ( ( ( 𝐴 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 ∈ 𝐵 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) |
55 |
54
|
com23 |
⊢ ( 𝐵 ∈ ω → ( 𝐴 ∈ 𝐵 → ( ( ( 𝐴 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) |
56 |
55
|
exp4a |
⊢ ( 𝐵 ∈ ω → ( 𝐴 ∈ 𝐵 → ( ( 𝐴 ∈ ω ∧ 𝐶 ∈ ω ) → ( ∅ ∈ 𝐶 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) ) |
57 |
56
|
exp4a |
⊢ ( 𝐵 ∈ ω → ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ ω → ( 𝐶 ∈ ω → ( ∅ ∈ 𝐶 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) ) ) |
58 |
2 57
|
mpdd |
⊢ ( 𝐵 ∈ ω → ( 𝐴 ∈ 𝐵 → ( 𝐶 ∈ ω → ( ∅ ∈ 𝐶 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) ) |
59 |
58
|
com34 |
⊢ ( 𝐵 ∈ ω → ( 𝐴 ∈ 𝐵 → ( ∅ ∈ 𝐶 → ( 𝐶 ∈ ω → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) ) |
60 |
59
|
com24 |
⊢ ( 𝐵 ∈ ω → ( 𝐶 ∈ ω → ( ∅ ∈ 𝐶 → ( 𝐴 ∈ 𝐵 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) ) |
61 |
60
|
imp31 |
⊢ ( ( ( 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 ∈ 𝐵 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) |