| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
⊢ ( 𝑥 = 𝐵 → ( suc 𝐴 ·o 𝑥 ) = ( suc 𝐴 ·o 𝐵 ) ) |
| 2 |
|
oveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o 𝐵 ) ) |
| 3 |
|
id |
⊢ ( 𝑥 = 𝐵 → 𝑥 = 𝐵 ) |
| 4 |
2 3
|
oveq12d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ·o 𝑥 ) +o 𝑥 ) = ( ( 𝐴 ·o 𝐵 ) +o 𝐵 ) ) |
| 5 |
1 4
|
eqeq12d |
⊢ ( 𝑥 = 𝐵 → ( ( suc 𝐴 ·o 𝑥 ) = ( ( 𝐴 ·o 𝑥 ) +o 𝑥 ) ↔ ( suc 𝐴 ·o 𝐵 ) = ( ( 𝐴 ·o 𝐵 ) +o 𝐵 ) ) ) |
| 6 |
5
|
imbi2d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ∈ ω → ( suc 𝐴 ·o 𝑥 ) = ( ( 𝐴 ·o 𝑥 ) +o 𝑥 ) ) ↔ ( 𝐴 ∈ ω → ( suc 𝐴 ·o 𝐵 ) = ( ( 𝐴 ·o 𝐵 ) +o 𝐵 ) ) ) ) |
| 7 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( suc 𝐴 ·o 𝑥 ) = ( suc 𝐴 ·o ∅ ) ) |
| 8 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o ∅ ) ) |
| 9 |
|
id |
⊢ ( 𝑥 = ∅ → 𝑥 = ∅ ) |
| 10 |
8 9
|
oveq12d |
⊢ ( 𝑥 = ∅ → ( ( 𝐴 ·o 𝑥 ) +o 𝑥 ) = ( ( 𝐴 ·o ∅ ) +o ∅ ) ) |
| 11 |
7 10
|
eqeq12d |
⊢ ( 𝑥 = ∅ → ( ( suc 𝐴 ·o 𝑥 ) = ( ( 𝐴 ·o 𝑥 ) +o 𝑥 ) ↔ ( suc 𝐴 ·o ∅ ) = ( ( 𝐴 ·o ∅ ) +o ∅ ) ) ) |
| 12 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( suc 𝐴 ·o 𝑥 ) = ( suc 𝐴 ·o 𝑦 ) ) |
| 13 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o 𝑦 ) ) |
| 14 |
|
id |
⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) |
| 15 |
13 14
|
oveq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ·o 𝑥 ) +o 𝑥 ) = ( ( 𝐴 ·o 𝑦 ) +o 𝑦 ) ) |
| 16 |
12 15
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( suc 𝐴 ·o 𝑥 ) = ( ( 𝐴 ·o 𝑥 ) +o 𝑥 ) ↔ ( suc 𝐴 ·o 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o 𝑦 ) ) ) |
| 17 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( suc 𝐴 ·o 𝑥 ) = ( suc 𝐴 ·o suc 𝑦 ) ) |
| 18 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o suc 𝑦 ) ) |
| 19 |
|
id |
⊢ ( 𝑥 = suc 𝑦 → 𝑥 = suc 𝑦 ) |
| 20 |
18 19
|
oveq12d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 ·o 𝑥 ) +o 𝑥 ) = ( ( 𝐴 ·o suc 𝑦 ) +o suc 𝑦 ) ) |
| 21 |
17 20
|
eqeq12d |
⊢ ( 𝑥 = suc 𝑦 → ( ( suc 𝐴 ·o 𝑥 ) = ( ( 𝐴 ·o 𝑥 ) +o 𝑥 ) ↔ ( suc 𝐴 ·o suc 𝑦 ) = ( ( 𝐴 ·o suc 𝑦 ) +o suc 𝑦 ) ) ) |
| 22 |
|
peano2 |
⊢ ( 𝐴 ∈ ω → suc 𝐴 ∈ ω ) |
| 23 |
|
nnm0 |
⊢ ( suc 𝐴 ∈ ω → ( suc 𝐴 ·o ∅ ) = ∅ ) |
| 24 |
22 23
|
syl |
⊢ ( 𝐴 ∈ ω → ( suc 𝐴 ·o ∅ ) = ∅ ) |
| 25 |
|
nnm0 |
⊢ ( 𝐴 ∈ ω → ( 𝐴 ·o ∅ ) = ∅ ) |
| 26 |
24 25
|
eqtr4d |
⊢ ( 𝐴 ∈ ω → ( suc 𝐴 ·o ∅ ) = ( 𝐴 ·o ∅ ) ) |
| 27 |
|
peano1 |
⊢ ∅ ∈ ω |
| 28 |
|
nnmcl |
⊢ ( ( 𝐴 ∈ ω ∧ ∅ ∈ ω ) → ( 𝐴 ·o ∅ ) ∈ ω ) |
| 29 |
27 28
|
mpan2 |
⊢ ( 𝐴 ∈ ω → ( 𝐴 ·o ∅ ) ∈ ω ) |
| 30 |
|
nna0 |
⊢ ( ( 𝐴 ·o ∅ ) ∈ ω → ( ( 𝐴 ·o ∅ ) +o ∅ ) = ( 𝐴 ·o ∅ ) ) |
| 31 |
29 30
|
syl |
⊢ ( 𝐴 ∈ ω → ( ( 𝐴 ·o ∅ ) +o ∅ ) = ( 𝐴 ·o ∅ ) ) |
| 32 |
26 31
|
eqtr4d |
⊢ ( 𝐴 ∈ ω → ( suc 𝐴 ·o ∅ ) = ( ( 𝐴 ·o ∅ ) +o ∅ ) ) |
| 33 |
|
oveq1 |
⊢ ( ( suc 𝐴 ·o 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o 𝑦 ) → ( ( suc 𝐴 ·o 𝑦 ) +o suc 𝐴 ) = ( ( ( 𝐴 ·o 𝑦 ) +o 𝑦 ) +o suc 𝐴 ) ) |
| 34 |
|
peano2b |
⊢ ( 𝐴 ∈ ω ↔ suc 𝐴 ∈ ω ) |
| 35 |
|
nnmsuc |
⊢ ( ( suc 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( suc 𝐴 ·o suc 𝑦 ) = ( ( suc 𝐴 ·o 𝑦 ) +o suc 𝐴 ) ) |
| 36 |
34 35
|
sylanb |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( suc 𝐴 ·o suc 𝑦 ) = ( ( suc 𝐴 ·o 𝑦 ) +o suc 𝐴 ) ) |
| 37 |
|
nnmcl |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 ·o 𝑦 ) ∈ ω ) |
| 38 |
|
peano2b |
⊢ ( 𝑦 ∈ ω ↔ suc 𝑦 ∈ ω ) |
| 39 |
|
nnaass |
⊢ ( ( ( 𝐴 ·o 𝑦 ) ∈ ω ∧ 𝐴 ∈ ω ∧ suc 𝑦 ∈ ω ) → ( ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) +o suc 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o ( 𝐴 +o suc 𝑦 ) ) ) |
| 40 |
38 39
|
syl3an3b |
⊢ ( ( ( 𝐴 ·o 𝑦 ) ∈ ω ∧ 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) +o suc 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o ( 𝐴 +o suc 𝑦 ) ) ) |
| 41 |
37 40
|
syl3an1 |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) ∧ 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) +o suc 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o ( 𝐴 +o suc 𝑦 ) ) ) |
| 42 |
41
|
3expb |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) ∧ ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) ) → ( ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) +o suc 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o ( 𝐴 +o suc 𝑦 ) ) ) |
| 43 |
42
|
anidms |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) +o suc 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o ( 𝐴 +o suc 𝑦 ) ) ) |
| 44 |
|
nnmsuc |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 ·o suc 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) |
| 45 |
44
|
oveq1d |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 ·o suc 𝑦 ) +o suc 𝑦 ) = ( ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) +o suc 𝑦 ) ) |
| 46 |
|
nnaass |
⊢ ( ( ( 𝐴 ·o 𝑦 ) ∈ ω ∧ 𝑦 ∈ ω ∧ suc 𝐴 ∈ ω ) → ( ( ( 𝐴 ·o 𝑦 ) +o 𝑦 ) +o suc 𝐴 ) = ( ( 𝐴 ·o 𝑦 ) +o ( 𝑦 +o suc 𝐴 ) ) ) |
| 47 |
34 46
|
syl3an3b |
⊢ ( ( ( 𝐴 ·o 𝑦 ) ∈ ω ∧ 𝑦 ∈ ω ∧ 𝐴 ∈ ω ) → ( ( ( 𝐴 ·o 𝑦 ) +o 𝑦 ) +o suc 𝐴 ) = ( ( 𝐴 ·o 𝑦 ) +o ( 𝑦 +o suc 𝐴 ) ) ) |
| 48 |
37 47
|
syl3an1 |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) ∧ 𝑦 ∈ ω ∧ 𝐴 ∈ ω ) → ( ( ( 𝐴 ·o 𝑦 ) +o 𝑦 ) +o suc 𝐴 ) = ( ( 𝐴 ·o 𝑦 ) +o ( 𝑦 +o suc 𝐴 ) ) ) |
| 49 |
48
|
3expb |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) ∧ ( 𝑦 ∈ ω ∧ 𝐴 ∈ ω ) ) → ( ( ( 𝐴 ·o 𝑦 ) +o 𝑦 ) +o suc 𝐴 ) = ( ( 𝐴 ·o 𝑦 ) +o ( 𝑦 +o suc 𝐴 ) ) ) |
| 50 |
49
|
an42s |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) ∧ ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) ) → ( ( ( 𝐴 ·o 𝑦 ) +o 𝑦 ) +o suc 𝐴 ) = ( ( 𝐴 ·o 𝑦 ) +o ( 𝑦 +o suc 𝐴 ) ) ) |
| 51 |
50
|
anidms |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( ( 𝐴 ·o 𝑦 ) +o 𝑦 ) +o suc 𝐴 ) = ( ( 𝐴 ·o 𝑦 ) +o ( 𝑦 +o suc 𝐴 ) ) ) |
| 52 |
|
nnacom |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 +o 𝑦 ) = ( 𝑦 +o 𝐴 ) ) |
| 53 |
|
suceq |
⊢ ( ( 𝐴 +o 𝑦 ) = ( 𝑦 +o 𝐴 ) → suc ( 𝐴 +o 𝑦 ) = suc ( 𝑦 +o 𝐴 ) ) |
| 54 |
52 53
|
syl |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → suc ( 𝐴 +o 𝑦 ) = suc ( 𝑦 +o 𝐴 ) ) |
| 55 |
|
nnasuc |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 +o suc 𝑦 ) = suc ( 𝐴 +o 𝑦 ) ) |
| 56 |
|
nnasuc |
⊢ ( ( 𝑦 ∈ ω ∧ 𝐴 ∈ ω ) → ( 𝑦 +o suc 𝐴 ) = suc ( 𝑦 +o 𝐴 ) ) |
| 57 |
56
|
ancoms |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝑦 +o suc 𝐴 ) = suc ( 𝑦 +o 𝐴 ) ) |
| 58 |
54 55 57
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 +o suc 𝑦 ) = ( 𝑦 +o suc 𝐴 ) ) |
| 59 |
58
|
oveq2d |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 ·o 𝑦 ) +o ( 𝐴 +o suc 𝑦 ) ) = ( ( 𝐴 ·o 𝑦 ) +o ( 𝑦 +o suc 𝐴 ) ) ) |
| 60 |
51 59
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( ( 𝐴 ·o 𝑦 ) +o 𝑦 ) +o suc 𝐴 ) = ( ( 𝐴 ·o 𝑦 ) +o ( 𝐴 +o suc 𝑦 ) ) ) |
| 61 |
43 45 60
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 ·o suc 𝑦 ) +o suc 𝑦 ) = ( ( ( 𝐴 ·o 𝑦 ) +o 𝑦 ) +o suc 𝐴 ) ) |
| 62 |
36 61
|
eqeq12d |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( suc 𝐴 ·o suc 𝑦 ) = ( ( 𝐴 ·o suc 𝑦 ) +o suc 𝑦 ) ↔ ( ( suc 𝐴 ·o 𝑦 ) +o suc 𝐴 ) = ( ( ( 𝐴 ·o 𝑦 ) +o 𝑦 ) +o suc 𝐴 ) ) ) |
| 63 |
33 62
|
imbitrrid |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( suc 𝐴 ·o 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o 𝑦 ) → ( suc 𝐴 ·o suc 𝑦 ) = ( ( 𝐴 ·o suc 𝑦 ) +o suc 𝑦 ) ) ) |
| 64 |
63
|
expcom |
⊢ ( 𝑦 ∈ ω → ( 𝐴 ∈ ω → ( ( suc 𝐴 ·o 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o 𝑦 ) → ( suc 𝐴 ·o suc 𝑦 ) = ( ( 𝐴 ·o suc 𝑦 ) +o suc 𝑦 ) ) ) ) |
| 65 |
11 16 21 32 64
|
finds2 |
⊢ ( 𝑥 ∈ ω → ( 𝐴 ∈ ω → ( suc 𝐴 ·o 𝑥 ) = ( ( 𝐴 ·o 𝑥 ) +o 𝑥 ) ) ) |
| 66 |
6 65
|
vtoclga |
⊢ ( 𝐵 ∈ ω → ( 𝐴 ∈ ω → ( suc 𝐴 ·o 𝐵 ) = ( ( 𝐴 ·o 𝐵 ) +o 𝐵 ) ) ) |
| 67 |
66
|
impcom |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( suc 𝐴 ·o 𝐵 ) = ( ( 𝐴 ·o 𝐵 ) +o 𝐵 ) ) |