Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑥 = 𝐵 → ( suc 𝐴 ·o 𝑥 ) = ( suc 𝐴 ·o 𝐵 ) ) |
2 |
|
oveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o 𝐵 ) ) |
3 |
|
id |
⊢ ( 𝑥 = 𝐵 → 𝑥 = 𝐵 ) |
4 |
2 3
|
oveq12d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ·o 𝑥 ) +o 𝑥 ) = ( ( 𝐴 ·o 𝐵 ) +o 𝐵 ) ) |
5 |
1 4
|
eqeq12d |
⊢ ( 𝑥 = 𝐵 → ( ( suc 𝐴 ·o 𝑥 ) = ( ( 𝐴 ·o 𝑥 ) +o 𝑥 ) ↔ ( suc 𝐴 ·o 𝐵 ) = ( ( 𝐴 ·o 𝐵 ) +o 𝐵 ) ) ) |
6 |
5
|
imbi2d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ∈ ω → ( suc 𝐴 ·o 𝑥 ) = ( ( 𝐴 ·o 𝑥 ) +o 𝑥 ) ) ↔ ( 𝐴 ∈ ω → ( suc 𝐴 ·o 𝐵 ) = ( ( 𝐴 ·o 𝐵 ) +o 𝐵 ) ) ) ) |
7 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( suc 𝐴 ·o 𝑥 ) = ( suc 𝐴 ·o ∅ ) ) |
8 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o ∅ ) ) |
9 |
|
id |
⊢ ( 𝑥 = ∅ → 𝑥 = ∅ ) |
10 |
8 9
|
oveq12d |
⊢ ( 𝑥 = ∅ → ( ( 𝐴 ·o 𝑥 ) +o 𝑥 ) = ( ( 𝐴 ·o ∅ ) +o ∅ ) ) |
11 |
7 10
|
eqeq12d |
⊢ ( 𝑥 = ∅ → ( ( suc 𝐴 ·o 𝑥 ) = ( ( 𝐴 ·o 𝑥 ) +o 𝑥 ) ↔ ( suc 𝐴 ·o ∅ ) = ( ( 𝐴 ·o ∅ ) +o ∅ ) ) ) |
12 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( suc 𝐴 ·o 𝑥 ) = ( suc 𝐴 ·o 𝑦 ) ) |
13 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o 𝑦 ) ) |
14 |
|
id |
⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) |
15 |
13 14
|
oveq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ·o 𝑥 ) +o 𝑥 ) = ( ( 𝐴 ·o 𝑦 ) +o 𝑦 ) ) |
16 |
12 15
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( suc 𝐴 ·o 𝑥 ) = ( ( 𝐴 ·o 𝑥 ) +o 𝑥 ) ↔ ( suc 𝐴 ·o 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o 𝑦 ) ) ) |
17 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( suc 𝐴 ·o 𝑥 ) = ( suc 𝐴 ·o suc 𝑦 ) ) |
18 |
|
oveq2 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ·o 𝑥 ) = ( 𝐴 ·o suc 𝑦 ) ) |
19 |
|
id |
⊢ ( 𝑥 = suc 𝑦 → 𝑥 = suc 𝑦 ) |
20 |
18 19
|
oveq12d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 ·o 𝑥 ) +o 𝑥 ) = ( ( 𝐴 ·o suc 𝑦 ) +o suc 𝑦 ) ) |
21 |
17 20
|
eqeq12d |
⊢ ( 𝑥 = suc 𝑦 → ( ( suc 𝐴 ·o 𝑥 ) = ( ( 𝐴 ·o 𝑥 ) +o 𝑥 ) ↔ ( suc 𝐴 ·o suc 𝑦 ) = ( ( 𝐴 ·o suc 𝑦 ) +o suc 𝑦 ) ) ) |
22 |
|
peano2 |
⊢ ( 𝐴 ∈ ω → suc 𝐴 ∈ ω ) |
23 |
|
nnm0 |
⊢ ( suc 𝐴 ∈ ω → ( suc 𝐴 ·o ∅ ) = ∅ ) |
24 |
22 23
|
syl |
⊢ ( 𝐴 ∈ ω → ( suc 𝐴 ·o ∅ ) = ∅ ) |
25 |
|
nnm0 |
⊢ ( 𝐴 ∈ ω → ( 𝐴 ·o ∅ ) = ∅ ) |
26 |
24 25
|
eqtr4d |
⊢ ( 𝐴 ∈ ω → ( suc 𝐴 ·o ∅ ) = ( 𝐴 ·o ∅ ) ) |
27 |
|
peano1 |
⊢ ∅ ∈ ω |
28 |
|
nnmcl |
⊢ ( ( 𝐴 ∈ ω ∧ ∅ ∈ ω ) → ( 𝐴 ·o ∅ ) ∈ ω ) |
29 |
27 28
|
mpan2 |
⊢ ( 𝐴 ∈ ω → ( 𝐴 ·o ∅ ) ∈ ω ) |
30 |
|
nna0 |
⊢ ( ( 𝐴 ·o ∅ ) ∈ ω → ( ( 𝐴 ·o ∅ ) +o ∅ ) = ( 𝐴 ·o ∅ ) ) |
31 |
29 30
|
syl |
⊢ ( 𝐴 ∈ ω → ( ( 𝐴 ·o ∅ ) +o ∅ ) = ( 𝐴 ·o ∅ ) ) |
32 |
26 31
|
eqtr4d |
⊢ ( 𝐴 ∈ ω → ( suc 𝐴 ·o ∅ ) = ( ( 𝐴 ·o ∅ ) +o ∅ ) ) |
33 |
|
oveq1 |
⊢ ( ( suc 𝐴 ·o 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o 𝑦 ) → ( ( suc 𝐴 ·o 𝑦 ) +o suc 𝐴 ) = ( ( ( 𝐴 ·o 𝑦 ) +o 𝑦 ) +o suc 𝐴 ) ) |
34 |
|
peano2b |
⊢ ( 𝐴 ∈ ω ↔ suc 𝐴 ∈ ω ) |
35 |
|
nnmsuc |
⊢ ( ( suc 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( suc 𝐴 ·o suc 𝑦 ) = ( ( suc 𝐴 ·o 𝑦 ) +o suc 𝐴 ) ) |
36 |
34 35
|
sylanb |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( suc 𝐴 ·o suc 𝑦 ) = ( ( suc 𝐴 ·o 𝑦 ) +o suc 𝐴 ) ) |
37 |
|
nnmcl |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 ·o 𝑦 ) ∈ ω ) |
38 |
|
peano2b |
⊢ ( 𝑦 ∈ ω ↔ suc 𝑦 ∈ ω ) |
39 |
|
nnaass |
⊢ ( ( ( 𝐴 ·o 𝑦 ) ∈ ω ∧ 𝐴 ∈ ω ∧ suc 𝑦 ∈ ω ) → ( ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) +o suc 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o ( 𝐴 +o suc 𝑦 ) ) ) |
40 |
38 39
|
syl3an3b |
⊢ ( ( ( 𝐴 ·o 𝑦 ) ∈ ω ∧ 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) +o suc 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o ( 𝐴 +o suc 𝑦 ) ) ) |
41 |
37 40
|
syl3an1 |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) ∧ 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) +o suc 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o ( 𝐴 +o suc 𝑦 ) ) ) |
42 |
41
|
3expb |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) ∧ ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) ) → ( ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) +o suc 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o ( 𝐴 +o suc 𝑦 ) ) ) |
43 |
42
|
anidms |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) +o suc 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o ( 𝐴 +o suc 𝑦 ) ) ) |
44 |
|
nnmsuc |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 ·o suc 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) ) |
45 |
44
|
oveq1d |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 ·o suc 𝑦 ) +o suc 𝑦 ) = ( ( ( 𝐴 ·o 𝑦 ) +o 𝐴 ) +o suc 𝑦 ) ) |
46 |
|
nnaass |
⊢ ( ( ( 𝐴 ·o 𝑦 ) ∈ ω ∧ 𝑦 ∈ ω ∧ suc 𝐴 ∈ ω ) → ( ( ( 𝐴 ·o 𝑦 ) +o 𝑦 ) +o suc 𝐴 ) = ( ( 𝐴 ·o 𝑦 ) +o ( 𝑦 +o suc 𝐴 ) ) ) |
47 |
34 46
|
syl3an3b |
⊢ ( ( ( 𝐴 ·o 𝑦 ) ∈ ω ∧ 𝑦 ∈ ω ∧ 𝐴 ∈ ω ) → ( ( ( 𝐴 ·o 𝑦 ) +o 𝑦 ) +o suc 𝐴 ) = ( ( 𝐴 ·o 𝑦 ) +o ( 𝑦 +o suc 𝐴 ) ) ) |
48 |
37 47
|
syl3an1 |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) ∧ 𝑦 ∈ ω ∧ 𝐴 ∈ ω ) → ( ( ( 𝐴 ·o 𝑦 ) +o 𝑦 ) +o suc 𝐴 ) = ( ( 𝐴 ·o 𝑦 ) +o ( 𝑦 +o suc 𝐴 ) ) ) |
49 |
48
|
3expb |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) ∧ ( 𝑦 ∈ ω ∧ 𝐴 ∈ ω ) ) → ( ( ( 𝐴 ·o 𝑦 ) +o 𝑦 ) +o suc 𝐴 ) = ( ( 𝐴 ·o 𝑦 ) +o ( 𝑦 +o suc 𝐴 ) ) ) |
50 |
49
|
an42s |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) ∧ ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) ) → ( ( ( 𝐴 ·o 𝑦 ) +o 𝑦 ) +o suc 𝐴 ) = ( ( 𝐴 ·o 𝑦 ) +o ( 𝑦 +o suc 𝐴 ) ) ) |
51 |
50
|
anidms |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( ( 𝐴 ·o 𝑦 ) +o 𝑦 ) +o suc 𝐴 ) = ( ( 𝐴 ·o 𝑦 ) +o ( 𝑦 +o suc 𝐴 ) ) ) |
52 |
|
nnacom |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 +o 𝑦 ) = ( 𝑦 +o 𝐴 ) ) |
53 |
|
suceq |
⊢ ( ( 𝐴 +o 𝑦 ) = ( 𝑦 +o 𝐴 ) → suc ( 𝐴 +o 𝑦 ) = suc ( 𝑦 +o 𝐴 ) ) |
54 |
52 53
|
syl |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → suc ( 𝐴 +o 𝑦 ) = suc ( 𝑦 +o 𝐴 ) ) |
55 |
|
nnasuc |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 +o suc 𝑦 ) = suc ( 𝐴 +o 𝑦 ) ) |
56 |
|
nnasuc |
⊢ ( ( 𝑦 ∈ ω ∧ 𝐴 ∈ ω ) → ( 𝑦 +o suc 𝐴 ) = suc ( 𝑦 +o 𝐴 ) ) |
57 |
56
|
ancoms |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝑦 +o suc 𝐴 ) = suc ( 𝑦 +o 𝐴 ) ) |
58 |
54 55 57
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝐴 +o suc 𝑦 ) = ( 𝑦 +o suc 𝐴 ) ) |
59 |
58
|
oveq2d |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 ·o 𝑦 ) +o ( 𝐴 +o suc 𝑦 ) ) = ( ( 𝐴 ·o 𝑦 ) +o ( 𝑦 +o suc 𝐴 ) ) ) |
60 |
51 59
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( ( 𝐴 ·o 𝑦 ) +o 𝑦 ) +o suc 𝐴 ) = ( ( 𝐴 ·o 𝑦 ) +o ( 𝐴 +o suc 𝑦 ) ) ) |
61 |
43 45 60
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( 𝐴 ·o suc 𝑦 ) +o suc 𝑦 ) = ( ( ( 𝐴 ·o 𝑦 ) +o 𝑦 ) +o suc 𝐴 ) ) |
62 |
36 61
|
eqeq12d |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( suc 𝐴 ·o suc 𝑦 ) = ( ( 𝐴 ·o suc 𝑦 ) +o suc 𝑦 ) ↔ ( ( suc 𝐴 ·o 𝑦 ) +o suc 𝐴 ) = ( ( ( 𝐴 ·o 𝑦 ) +o 𝑦 ) +o suc 𝐴 ) ) ) |
63 |
33 62
|
syl5ibr |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑦 ∈ ω ) → ( ( suc 𝐴 ·o 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o 𝑦 ) → ( suc 𝐴 ·o suc 𝑦 ) = ( ( 𝐴 ·o suc 𝑦 ) +o suc 𝑦 ) ) ) |
64 |
63
|
expcom |
⊢ ( 𝑦 ∈ ω → ( 𝐴 ∈ ω → ( ( suc 𝐴 ·o 𝑦 ) = ( ( 𝐴 ·o 𝑦 ) +o 𝑦 ) → ( suc 𝐴 ·o suc 𝑦 ) = ( ( 𝐴 ·o suc 𝑦 ) +o suc 𝑦 ) ) ) ) |
65 |
11 16 21 32 64
|
finds2 |
⊢ ( 𝑥 ∈ ω → ( 𝐴 ∈ ω → ( suc 𝐴 ·o 𝑥 ) = ( ( 𝐴 ·o 𝑥 ) +o 𝑥 ) ) ) |
66 |
6 65
|
vtoclga |
⊢ ( 𝐵 ∈ ω → ( 𝐴 ∈ ω → ( suc 𝐴 ·o 𝐵 ) = ( ( 𝐴 ·o 𝐵 ) +o 𝐵 ) ) ) |
67 |
66
|
impcom |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( suc 𝐴 ·o 𝐵 ) = ( ( 𝐴 ·o 𝐵 ) +o 𝐵 ) ) |