Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑥 = 1 → ( 𝐴 · 𝑥 ) = ( 𝐴 · 1 ) ) |
2 |
1
|
eleq1d |
⊢ ( 𝑥 = 1 → ( ( 𝐴 · 𝑥 ) ∈ ℕ ↔ ( 𝐴 · 1 ) ∈ ℕ ) ) |
3 |
2
|
imbi2d |
⊢ ( 𝑥 = 1 → ( ( 𝐴 ∈ ℕ → ( 𝐴 · 𝑥 ) ∈ ℕ ) ↔ ( 𝐴 ∈ ℕ → ( 𝐴 · 1 ) ∈ ℕ ) ) ) |
4 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 · 𝑥 ) = ( 𝐴 · 𝑦 ) ) |
5 |
4
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 · 𝑥 ) ∈ ℕ ↔ ( 𝐴 · 𝑦 ) ∈ ℕ ) ) |
6 |
5
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ∈ ℕ → ( 𝐴 · 𝑥 ) ∈ ℕ ) ↔ ( 𝐴 ∈ ℕ → ( 𝐴 · 𝑦 ) ∈ ℕ ) ) ) |
7 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝐴 · 𝑥 ) = ( 𝐴 · ( 𝑦 + 1 ) ) ) |
8 |
7
|
eleq1d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝐴 · 𝑥 ) ∈ ℕ ↔ ( 𝐴 · ( 𝑦 + 1 ) ) ∈ ℕ ) ) |
9 |
8
|
imbi2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝐴 ∈ ℕ → ( 𝐴 · 𝑥 ) ∈ ℕ ) ↔ ( 𝐴 ∈ ℕ → ( 𝐴 · ( 𝑦 + 1 ) ) ∈ ℕ ) ) ) |
10 |
|
oveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐴 · 𝑥 ) = ( 𝐴 · 𝐵 ) ) |
11 |
10
|
eleq1d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 · 𝑥 ) ∈ ℕ ↔ ( 𝐴 · 𝐵 ) ∈ ℕ ) ) |
12 |
11
|
imbi2d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ∈ ℕ → ( 𝐴 · 𝑥 ) ∈ ℕ ) ↔ ( 𝐴 ∈ ℕ → ( 𝐴 · 𝐵 ) ∈ ℕ ) ) ) |
13 |
|
nnre |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℝ ) |
14 |
|
ax-1rid |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 · 1 ) = 𝐴 ) |
15 |
14
|
eleq1d |
⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 · 1 ) ∈ ℕ ↔ 𝐴 ∈ ℕ ) ) |
16 |
15
|
biimprd |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ∈ ℕ → ( 𝐴 · 1 ) ∈ ℕ ) ) |
17 |
13 16
|
mpcom |
⊢ ( 𝐴 ∈ ℕ → ( 𝐴 · 1 ) ∈ ℕ ) |
18 |
|
nnaddcl |
⊢ ( ( ( 𝐴 · 𝑦 ) ∈ ℕ ∧ 𝐴 ∈ ℕ ) → ( ( 𝐴 · 𝑦 ) + 𝐴 ) ∈ ℕ ) |
19 |
18
|
ancoms |
⊢ ( ( 𝐴 ∈ ℕ ∧ ( 𝐴 · 𝑦 ) ∈ ℕ ) → ( ( 𝐴 · 𝑦 ) + 𝐴 ) ∈ ℕ ) |
20 |
|
nncn |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℂ ) |
21 |
|
nncn |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℂ ) |
22 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
23 |
|
adddi |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝐴 · ( 𝑦 + 1 ) ) = ( ( 𝐴 · 𝑦 ) + ( 𝐴 · 1 ) ) ) |
24 |
22 23
|
mp3an3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝐴 · ( 𝑦 + 1 ) ) = ( ( 𝐴 · 𝑦 ) + ( 𝐴 · 1 ) ) ) |
25 |
20 21 24
|
syl2an |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝐴 · ( 𝑦 + 1 ) ) = ( ( 𝐴 · 𝑦 ) + ( 𝐴 · 1 ) ) ) |
26 |
13 14
|
syl |
⊢ ( 𝐴 ∈ ℕ → ( 𝐴 · 1 ) = 𝐴 ) |
27 |
26
|
adantr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝐴 · 1 ) = 𝐴 ) |
28 |
27
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( ( 𝐴 · 𝑦 ) + ( 𝐴 · 1 ) ) = ( ( 𝐴 · 𝑦 ) + 𝐴 ) ) |
29 |
25 28
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝐴 · ( 𝑦 + 1 ) ) = ( ( 𝐴 · 𝑦 ) + 𝐴 ) ) |
30 |
29
|
eleq1d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( ( 𝐴 · ( 𝑦 + 1 ) ) ∈ ℕ ↔ ( ( 𝐴 · 𝑦 ) + 𝐴 ) ∈ ℕ ) ) |
31 |
19 30
|
syl5ibr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( ( 𝐴 ∈ ℕ ∧ ( 𝐴 · 𝑦 ) ∈ ℕ ) → ( 𝐴 · ( 𝑦 + 1 ) ) ∈ ℕ ) ) |
32 |
31
|
exp4b |
⊢ ( 𝐴 ∈ ℕ → ( 𝑦 ∈ ℕ → ( 𝐴 ∈ ℕ → ( ( 𝐴 · 𝑦 ) ∈ ℕ → ( 𝐴 · ( 𝑦 + 1 ) ) ∈ ℕ ) ) ) ) |
33 |
32
|
pm2.43b |
⊢ ( 𝑦 ∈ ℕ → ( 𝐴 ∈ ℕ → ( ( 𝐴 · 𝑦 ) ∈ ℕ → ( 𝐴 · ( 𝑦 + 1 ) ) ∈ ℕ ) ) ) |
34 |
33
|
a2d |
⊢ ( 𝑦 ∈ ℕ → ( ( 𝐴 ∈ ℕ → ( 𝐴 · 𝑦 ) ∈ ℕ ) → ( 𝐴 ∈ ℕ → ( 𝐴 · ( 𝑦 + 1 ) ) ∈ ℕ ) ) ) |
35 |
3 6 9 12 17 34
|
nnind |
⊢ ( 𝐵 ∈ ℕ → ( 𝐴 ∈ ℕ → ( 𝐴 · 𝐵 ) ∈ ℕ ) ) |
36 |
35
|
impcom |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 · 𝐵 ) ∈ ℕ ) |