Metamath Proof Explorer


Theorem nnmulcld

Description: Closure of multiplication of positive integers. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses nnge1d.1 ( 𝜑𝐴 ∈ ℕ )
nnmulcld.2 ( 𝜑𝐵 ∈ ℕ )
Assertion nnmulcld ( 𝜑 → ( 𝐴 · 𝐵 ) ∈ ℕ )

Proof

Step Hyp Ref Expression
1 nnge1d.1 ( 𝜑𝐴 ∈ ℕ )
2 nnmulcld.2 ( 𝜑𝐵 ∈ ℕ )
3 nnmulcl ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 · 𝐵 ) ∈ ℕ )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐴 · 𝐵 ) ∈ ℕ )