Metamath Proof Explorer


Theorem nnmulcli

Description: Closure of multiplication of positive integers. (Contributed by Mario Carneiro, 18-Feb-2014)

Ref Expression
Hypotheses nnmulcli.1 𝐴 ∈ ℕ
nnmulcli.2 𝐵 ∈ ℕ
Assertion nnmulcli ( 𝐴 · 𝐵 ) ∈ ℕ

Proof

Step Hyp Ref Expression
1 nnmulcli.1 𝐴 ∈ ℕ
2 nnmulcli.2 𝐵 ∈ ℕ
3 nnmulcl ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 · 𝐵 ) ∈ ℕ )
4 1 2 3 mp2an ( 𝐴 · 𝐵 ) ∈ ℕ