Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) |
2 |
1
|
nn0cnd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℂ ) |
3 |
2
|
mulid2d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 1 · 𝑁 ) = 𝑁 ) |
4 |
|
1red |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 1 ∈ ℝ ) |
5 |
|
nnre |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ ) |
6 |
5
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝑀 ∈ ℝ ) |
7 |
1
|
nn0red |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℝ ) |
8 |
1
|
nn0ge0d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 0 ≤ 𝑁 ) |
9 |
|
nnge1 |
⊢ ( 𝑀 ∈ ℕ → 1 ≤ 𝑀 ) |
10 |
9
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 1 ≤ 𝑀 ) |
11 |
4 6 7 8 10
|
lemul1ad |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 1 · 𝑁 ) ≤ ( 𝑀 · 𝑁 ) ) |
12 |
3 11
|
eqbrtrrd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ≤ ( 𝑀 · 𝑁 ) ) |