Metamath Proof Explorer


Theorem nnmword

Description: Weak ordering property of ordinal multiplication. (Contributed by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion nnmword ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴𝐵 ↔ ( 𝐶 ·o 𝐴 ) ⊆ ( 𝐶 ·o 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 iba ( ∅ ∈ 𝐶 → ( 𝐵𝐴 ↔ ( 𝐵𝐴 ∧ ∅ ∈ 𝐶 ) ) )
2 nnmord ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐵𝐴 ∧ ∅ ∈ 𝐶 ) ↔ ( 𝐶 ·o 𝐵 ) ∈ ( 𝐶 ·o 𝐴 ) ) )
3 2 3com12 ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐵𝐴 ∧ ∅ ∈ 𝐶 ) ↔ ( 𝐶 ·o 𝐵 ) ∈ ( 𝐶 ·o 𝐴 ) ) )
4 1 3 sylan9bbr ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐵𝐴 ↔ ( 𝐶 ·o 𝐵 ) ∈ ( 𝐶 ·o 𝐴 ) ) )
5 4 notbid ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( ¬ 𝐵𝐴 ↔ ¬ ( 𝐶 ·o 𝐵 ) ∈ ( 𝐶 ·o 𝐴 ) ) )
6 simpl1 ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → 𝐴 ∈ ω )
7 nnon ( 𝐴 ∈ ω → 𝐴 ∈ On )
8 6 7 syl ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → 𝐴 ∈ On )
9 simpl2 ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → 𝐵 ∈ ω )
10 nnon ( 𝐵 ∈ ω → 𝐵 ∈ On )
11 9 10 syl ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → 𝐵 ∈ On )
12 ontri1 ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴𝐵 ↔ ¬ 𝐵𝐴 ) )
13 8 11 12 syl2anc ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴𝐵 ↔ ¬ 𝐵𝐴 ) )
14 simpl3 ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → 𝐶 ∈ ω )
15 nnmcl ( ( 𝐶 ∈ ω ∧ 𝐴 ∈ ω ) → ( 𝐶 ·o 𝐴 ) ∈ ω )
16 14 6 15 syl2anc ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐶 ·o 𝐴 ) ∈ ω )
17 nnon ( ( 𝐶 ·o 𝐴 ) ∈ ω → ( 𝐶 ·o 𝐴 ) ∈ On )
18 16 17 syl ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐶 ·o 𝐴 ) ∈ On )
19 nnmcl ( ( 𝐶 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐶 ·o 𝐵 ) ∈ ω )
20 14 9 19 syl2anc ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐶 ·o 𝐵 ) ∈ ω )
21 nnon ( ( 𝐶 ·o 𝐵 ) ∈ ω → ( 𝐶 ·o 𝐵 ) ∈ On )
22 20 21 syl ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐶 ·o 𝐵 ) ∈ On )
23 ontri1 ( ( ( 𝐶 ·o 𝐴 ) ∈ On ∧ ( 𝐶 ·o 𝐵 ) ∈ On ) → ( ( 𝐶 ·o 𝐴 ) ⊆ ( 𝐶 ·o 𝐵 ) ↔ ¬ ( 𝐶 ·o 𝐵 ) ∈ ( 𝐶 ·o 𝐴 ) ) )
24 18 22 23 syl2anc ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( ( 𝐶 ·o 𝐴 ) ⊆ ( 𝐶 ·o 𝐵 ) ↔ ¬ ( 𝐶 ·o 𝐵 ) ∈ ( 𝐶 ·o 𝐴 ) ) )
25 5 13 24 3bitr4d ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴𝐵 ↔ ( 𝐶 ·o 𝐴 ) ⊆ ( 𝐶 ·o 𝐵 ) ) )