Step |
Hyp |
Ref |
Expression |
1 |
|
iba |
⊢ ( ∅ ∈ 𝐶 → ( 𝐵 ∈ 𝐴 ↔ ( 𝐵 ∈ 𝐴 ∧ ∅ ∈ 𝐶 ) ) ) |
2 |
|
nnmord |
⊢ ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐵 ∈ 𝐴 ∧ ∅ ∈ 𝐶 ) ↔ ( 𝐶 ·o 𝐵 ) ∈ ( 𝐶 ·o 𝐴 ) ) ) |
3 |
2
|
3com12 |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐵 ∈ 𝐴 ∧ ∅ ∈ 𝐶 ) ↔ ( 𝐶 ·o 𝐵 ) ∈ ( 𝐶 ·o 𝐴 ) ) ) |
4 |
1 3
|
sylan9bbr |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐵 ∈ 𝐴 ↔ ( 𝐶 ·o 𝐵 ) ∈ ( 𝐶 ·o 𝐴 ) ) ) |
5 |
4
|
notbid |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( ¬ 𝐵 ∈ 𝐴 ↔ ¬ ( 𝐶 ·o 𝐵 ) ∈ ( 𝐶 ·o 𝐴 ) ) ) |
6 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → 𝐴 ∈ ω ) |
7 |
|
nnon |
⊢ ( 𝐴 ∈ ω → 𝐴 ∈ On ) |
8 |
6 7
|
syl |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → 𝐴 ∈ On ) |
9 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → 𝐵 ∈ ω ) |
10 |
|
nnon |
⊢ ( 𝐵 ∈ ω → 𝐵 ∈ On ) |
11 |
9 10
|
syl |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → 𝐵 ∈ On ) |
12 |
|
ontri1 |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴 ) ) |
13 |
8 11 12
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴 ) ) |
14 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → 𝐶 ∈ ω ) |
15 |
|
nnmcl |
⊢ ( ( 𝐶 ∈ ω ∧ 𝐴 ∈ ω ) → ( 𝐶 ·o 𝐴 ) ∈ ω ) |
16 |
14 6 15
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐶 ·o 𝐴 ) ∈ ω ) |
17 |
|
nnon |
⊢ ( ( 𝐶 ·o 𝐴 ) ∈ ω → ( 𝐶 ·o 𝐴 ) ∈ On ) |
18 |
16 17
|
syl |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐶 ·o 𝐴 ) ∈ On ) |
19 |
|
nnmcl |
⊢ ( ( 𝐶 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐶 ·o 𝐵 ) ∈ ω ) |
20 |
14 9 19
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐶 ·o 𝐵 ) ∈ ω ) |
21 |
|
nnon |
⊢ ( ( 𝐶 ·o 𝐵 ) ∈ ω → ( 𝐶 ·o 𝐵 ) ∈ On ) |
22 |
20 21
|
syl |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐶 ·o 𝐵 ) ∈ On ) |
23 |
|
ontri1 |
⊢ ( ( ( 𝐶 ·o 𝐴 ) ∈ On ∧ ( 𝐶 ·o 𝐵 ) ∈ On ) → ( ( 𝐶 ·o 𝐴 ) ⊆ ( 𝐶 ·o 𝐵 ) ↔ ¬ ( 𝐶 ·o 𝐵 ) ∈ ( 𝐶 ·o 𝐴 ) ) ) |
24 |
18 22 23
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( ( 𝐶 ·o 𝐴 ) ⊆ ( 𝐶 ·o 𝐵 ) ↔ ¬ ( 𝐶 ·o 𝐵 ) ∈ ( 𝐶 ·o 𝐴 ) ) ) |
25 |
5 13 24
|
3bitr4d |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 ⊆ 𝐵 ↔ ( 𝐶 ·o 𝐴 ) ⊆ ( 𝐶 ·o 𝐵 ) ) ) |