Description: The negative of a positive integer is an integer. (Contributed by NM, 12-Jan-2002)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnnegz | ⊢ ( 𝑁 ∈ ℕ → - 𝑁 ∈ ℤ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnre | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) | |
| 2 | 1 | renegcld | ⊢ ( 𝑁 ∈ ℕ → - 𝑁 ∈ ℝ ) |
| 3 | nncn | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) | |
| 4 | negneg | ⊢ ( 𝑁 ∈ ℂ → - - 𝑁 = 𝑁 ) | |
| 5 | 4 | eleq1d | ⊢ ( 𝑁 ∈ ℂ → ( - - 𝑁 ∈ ℕ ↔ 𝑁 ∈ ℕ ) ) |
| 6 | 5 | biimprd | ⊢ ( 𝑁 ∈ ℂ → ( 𝑁 ∈ ℕ → - - 𝑁 ∈ ℕ ) ) |
| 7 | 3 6 | mpcom | ⊢ ( 𝑁 ∈ ℕ → - - 𝑁 ∈ ℕ ) |
| 8 | 7 | 3mix3d | ⊢ ( 𝑁 ∈ ℕ → ( - 𝑁 = 0 ∨ - 𝑁 ∈ ℕ ∨ - - 𝑁 ∈ ℕ ) ) |
| 9 | elz | ⊢ ( - 𝑁 ∈ ℤ ↔ ( - 𝑁 ∈ ℝ ∧ ( - 𝑁 = 0 ∨ - 𝑁 ∈ ℕ ∨ - - 𝑁 ∈ ℕ ) ) ) | |
| 10 | 2 8 9 | sylanbrc | ⊢ ( 𝑁 ∈ ℕ → - 𝑁 ∈ ℤ ) |