Step |
Hyp |
Ref |
Expression |
1 |
|
nnon |
⊢ ( 𝐴 ∈ ω → 𝐴 ∈ On ) |
2 |
|
onnbtwn |
⊢ ( 𝐴 ∈ On → ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴 ) ) |
3 |
1 2
|
syl |
⊢ ( 𝐴 ∈ ω → ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴 ) ) |
4 |
3
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = ( 2o ·o 𝐴 ) ) → ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴 ) ) |
5 |
|
suceq |
⊢ ( 𝐶 = ( 2o ·o 𝐴 ) → suc 𝐶 = suc ( 2o ·o 𝐴 ) ) |
6 |
5
|
eqeq1d |
⊢ ( 𝐶 = ( 2o ·o 𝐴 ) → ( suc 𝐶 = ( 2o ·o 𝐵 ) ↔ suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) ) ) |
7 |
6
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = ( 2o ·o 𝐴 ) ) → ( suc 𝐶 = ( 2o ·o 𝐵 ) ↔ suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) ) ) |
8 |
|
ovex |
⊢ ( 2o ·o 𝐴 ) ∈ V |
9 |
8
|
sucid |
⊢ ( 2o ·o 𝐴 ) ∈ suc ( 2o ·o 𝐴 ) |
10 |
|
eleq2 |
⊢ ( suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) → ( ( 2o ·o 𝐴 ) ∈ suc ( 2o ·o 𝐴 ) ↔ ( 2o ·o 𝐴 ) ∈ ( 2o ·o 𝐵 ) ) ) |
11 |
9 10
|
mpbii |
⊢ ( suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) → ( 2o ·o 𝐴 ) ∈ ( 2o ·o 𝐵 ) ) |
12 |
|
2onn |
⊢ 2o ∈ ω |
13 |
|
nnmord |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 2o ∈ ω ) → ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 2o ) ↔ ( 2o ·o 𝐴 ) ∈ ( 2o ·o 𝐵 ) ) ) |
14 |
12 13
|
mp3an3 |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 2o ) ↔ ( 2o ·o 𝐴 ) ∈ ( 2o ·o 𝐵 ) ) ) |
15 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 2o ) → 𝐴 ∈ 𝐵 ) |
16 |
14 15
|
syl6bir |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( 2o ·o 𝐴 ) ∈ ( 2o ·o 𝐵 ) → 𝐴 ∈ 𝐵 ) ) |
17 |
11 16
|
syl5 |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) → 𝐴 ∈ 𝐵 ) ) |
18 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) ) → suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) ) |
19 |
|
nnmcl |
⊢ ( ( 2o ∈ ω ∧ 𝐴 ∈ ω ) → ( 2o ·o 𝐴 ) ∈ ω ) |
20 |
12 19
|
mpan |
⊢ ( 𝐴 ∈ ω → ( 2o ·o 𝐴 ) ∈ ω ) |
21 |
|
nnon |
⊢ ( ( 2o ·o 𝐴 ) ∈ ω → ( 2o ·o 𝐴 ) ∈ On ) |
22 |
|
oa1suc |
⊢ ( ( 2o ·o 𝐴 ) ∈ On → ( ( 2o ·o 𝐴 ) +o 1o ) = suc ( 2o ·o 𝐴 ) ) |
23 |
20 21 22
|
3syl |
⊢ ( 𝐴 ∈ ω → ( ( 2o ·o 𝐴 ) +o 1o ) = suc ( 2o ·o 𝐴 ) ) |
24 |
|
1oex |
⊢ 1o ∈ V |
25 |
24
|
sucid |
⊢ 1o ∈ suc 1o |
26 |
|
df-2o |
⊢ 2o = suc 1o |
27 |
25 26
|
eleqtrri |
⊢ 1o ∈ 2o |
28 |
|
1onn |
⊢ 1o ∈ ω |
29 |
|
nnaord |
⊢ ( ( 1o ∈ ω ∧ 2o ∈ ω ∧ ( 2o ·o 𝐴 ) ∈ ω ) → ( 1o ∈ 2o ↔ ( ( 2o ·o 𝐴 ) +o 1o ) ∈ ( ( 2o ·o 𝐴 ) +o 2o ) ) ) |
30 |
28 12 20 29
|
mp3an12i |
⊢ ( 𝐴 ∈ ω → ( 1o ∈ 2o ↔ ( ( 2o ·o 𝐴 ) +o 1o ) ∈ ( ( 2o ·o 𝐴 ) +o 2o ) ) ) |
31 |
27 30
|
mpbii |
⊢ ( 𝐴 ∈ ω → ( ( 2o ·o 𝐴 ) +o 1o ) ∈ ( ( 2o ·o 𝐴 ) +o 2o ) ) |
32 |
|
nnmsuc |
⊢ ( ( 2o ∈ ω ∧ 𝐴 ∈ ω ) → ( 2o ·o suc 𝐴 ) = ( ( 2o ·o 𝐴 ) +o 2o ) ) |
33 |
12 32
|
mpan |
⊢ ( 𝐴 ∈ ω → ( 2o ·o suc 𝐴 ) = ( ( 2o ·o 𝐴 ) +o 2o ) ) |
34 |
31 33
|
eleqtrrd |
⊢ ( 𝐴 ∈ ω → ( ( 2o ·o 𝐴 ) +o 1o ) ∈ ( 2o ·o suc 𝐴 ) ) |
35 |
23 34
|
eqeltrrd |
⊢ ( 𝐴 ∈ ω → suc ( 2o ·o 𝐴 ) ∈ ( 2o ·o suc 𝐴 ) ) |
36 |
35
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) ) → suc ( 2o ·o 𝐴 ) ∈ ( 2o ·o suc 𝐴 ) ) |
37 |
18 36
|
eqeltrrd |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) ) → ( 2o ·o 𝐵 ) ∈ ( 2o ·o suc 𝐴 ) ) |
38 |
|
peano2 |
⊢ ( 𝐴 ∈ ω → suc 𝐴 ∈ ω ) |
39 |
|
nnmord |
⊢ ( ( 𝐵 ∈ ω ∧ suc 𝐴 ∈ ω ∧ 2o ∈ ω ) → ( ( 𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o ) ↔ ( 2o ·o 𝐵 ) ∈ ( 2o ·o suc 𝐴 ) ) ) |
40 |
12 39
|
mp3an3 |
⊢ ( ( 𝐵 ∈ ω ∧ suc 𝐴 ∈ ω ) → ( ( 𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o ) ↔ ( 2o ·o 𝐵 ) ∈ ( 2o ·o suc 𝐴 ) ) ) |
41 |
38 40
|
sylan2 |
⊢ ( ( 𝐵 ∈ ω ∧ 𝐴 ∈ ω ) → ( ( 𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o ) ↔ ( 2o ·o 𝐵 ) ∈ ( 2o ·o suc 𝐴 ) ) ) |
42 |
41
|
ancoms |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( 𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o ) ↔ ( 2o ·o 𝐵 ) ∈ ( 2o ·o suc 𝐴 ) ) ) |
43 |
42
|
adantr |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) ) → ( ( 𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o ) ↔ ( 2o ·o 𝐵 ) ∈ ( 2o ·o suc 𝐴 ) ) ) |
44 |
37 43
|
mpbird |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) ) → ( 𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2o ) ) |
45 |
44
|
simpld |
⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) ) → 𝐵 ∈ suc 𝐴 ) |
46 |
45
|
ex |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) → 𝐵 ∈ suc 𝐴 ) ) |
47 |
17 46
|
jcad |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) → ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴 ) ) ) |
48 |
47
|
3adant3 |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = ( 2o ·o 𝐴 ) ) → ( suc ( 2o ·o 𝐴 ) = ( 2o ·o 𝐵 ) → ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴 ) ) ) |
49 |
7 48
|
sylbid |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = ( 2o ·o 𝐴 ) ) → ( suc 𝐶 = ( 2o ·o 𝐵 ) → ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴 ) ) ) |
50 |
4 49
|
mtod |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = ( 2o ·o 𝐴 ) ) → ¬ suc 𝐶 = ( 2o ·o 𝐵 ) ) |