Description: A positive integer is not less than or equal to zero. (Contributed by AV, 13-May-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | nnnle0 | ⊢ ( 𝐴 ∈ ℕ → ¬ 𝐴 ≤ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nngt0 | ⊢ ( 𝐴 ∈ ℕ → 0 < 𝐴 ) | |
2 | 0re | ⊢ 0 ∈ ℝ | |
3 | nnre | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℝ ) | |
4 | ltnle | ⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 < 𝐴 ↔ ¬ 𝐴 ≤ 0 ) ) | |
5 | 4 | bicomd | ⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ¬ 𝐴 ≤ 0 ↔ 0 < 𝐴 ) ) |
6 | 2 3 5 | sylancr | ⊢ ( 𝐴 ∈ ℕ → ( ¬ 𝐴 ≤ 0 ↔ 0 < 𝐴 ) ) |
7 | 1 6 | mpbird | ⊢ ( 𝐴 ∈ ℕ → ¬ 𝐴 ≤ 0 ) |