Metamath Proof Explorer


Theorem nnnle0

Description: A positive integer is not less than or equal to zero. (Contributed by AV, 13-May-2020)

Ref Expression
Assertion nnnle0 ( 𝐴 ∈ ℕ → ¬ 𝐴 ≤ 0 )

Proof

Step Hyp Ref Expression
1 nngt0 ( 𝐴 ∈ ℕ → 0 < 𝐴 )
2 0re 0 ∈ ℝ
3 nnre ( 𝐴 ∈ ℕ → 𝐴 ∈ ℝ )
4 ltnle ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 < 𝐴 ↔ ¬ 𝐴 ≤ 0 ) )
5 4 bicomd ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ¬ 𝐴 ≤ 0 ↔ 0 < 𝐴 ) )
6 2 3 5 sylancr ( 𝐴 ∈ ℕ → ( ¬ 𝐴 ≤ 0 ↔ 0 < 𝐴 ) )
7 1 6 mpbird ( 𝐴 ∈ ℕ → ¬ 𝐴 ≤ 0 )