Metamath Proof Explorer


Theorem nnnn0addcl

Description: A positive integer plus a nonnegative integer is a positive integer. (Contributed by NM, 20-Apr-2005) (Proof shortened by Mario Carneiro, 16-May-2014)

Ref Expression
Assertion nnnn0addcl ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 + 𝑁 ) ∈ ℕ )

Proof

Step Hyp Ref Expression
1 elnn0 ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) )
2 nnaddcl ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 + 𝑁 ) ∈ ℕ )
3 oveq2 ( 𝑁 = 0 → ( 𝑀 + 𝑁 ) = ( 𝑀 + 0 ) )
4 nncn ( 𝑀 ∈ ℕ → 𝑀 ∈ ℂ )
5 4 addid1d ( 𝑀 ∈ ℕ → ( 𝑀 + 0 ) = 𝑀 )
6 3 5 sylan9eqr ( ( 𝑀 ∈ ℕ ∧ 𝑁 = 0 ) → ( 𝑀 + 𝑁 ) = 𝑀 )
7 simpl ( ( 𝑀 ∈ ℕ ∧ 𝑁 = 0 ) → 𝑀 ∈ ℕ )
8 6 7 eqeltrd ( ( 𝑀 ∈ ℕ ∧ 𝑁 = 0 ) → ( 𝑀 + 𝑁 ) ∈ ℕ )
9 2 8 jaodan ( ( 𝑀 ∈ ℕ ∧ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) → ( 𝑀 + 𝑁 ) ∈ ℕ )
10 1 9 sylan2b ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 + 𝑁 ) ∈ ℕ )