Description: A positive integer plus a nonnegative integer is a positive integer. (Contributed by NM, 20-Apr-2005) (Proof shortened by Mario Carneiro, 16-May-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | nnnn0addcl | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 + 𝑁 ) ∈ ℕ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 | ⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) | |
2 | nnaddcl | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 + 𝑁 ) ∈ ℕ ) | |
3 | oveq2 | ⊢ ( 𝑁 = 0 → ( 𝑀 + 𝑁 ) = ( 𝑀 + 0 ) ) | |
4 | nncn | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℂ ) | |
5 | 4 | addid1d | ⊢ ( 𝑀 ∈ ℕ → ( 𝑀 + 0 ) = 𝑀 ) |
6 | 3 5 | sylan9eqr | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 = 0 ) → ( 𝑀 + 𝑁 ) = 𝑀 ) |
7 | simpl | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 = 0 ) → 𝑀 ∈ ℕ ) | |
8 | 6 7 | eqeltrd | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 = 0 ) → ( 𝑀 + 𝑁 ) ∈ ℕ ) |
9 | 2 8 | jaodan | ⊢ ( ( 𝑀 ∈ ℕ ∧ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) → ( 𝑀 + 𝑁 ) ∈ ℕ ) |
10 | 1 9 | sylan2b | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 + 𝑁 ) ∈ ℕ ) |