Step |
Hyp |
Ref |
Expression |
1 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
2 |
|
oddp1d2 |
⊢ ( 𝑁 ∈ ℤ → ( ¬ 2 ∥ 𝑁 ↔ ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) ) |
3 |
1 2
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( ¬ 2 ∥ 𝑁 ↔ ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) ) |
4 |
|
peano2nn |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℕ ) |
5 |
4
|
nnred |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℝ ) |
6 |
|
2re |
⊢ 2 ∈ ℝ |
7 |
6
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℝ ) |
8 |
|
nnre |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) |
9 |
|
1red |
⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℝ ) |
10 |
|
nngt0 |
⊢ ( 𝑁 ∈ ℕ → 0 < 𝑁 ) |
11 |
|
0lt1 |
⊢ 0 < 1 |
12 |
11
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 0 < 1 ) |
13 |
8 9 10 12
|
addgt0d |
⊢ ( 𝑁 ∈ ℕ → 0 < ( 𝑁 + 1 ) ) |
14 |
|
2pos |
⊢ 0 < 2 |
15 |
14
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 0 < 2 ) |
16 |
5 7 13 15
|
divgt0d |
⊢ ( 𝑁 ∈ ℕ → 0 < ( ( 𝑁 + 1 ) / 2 ) ) |
17 |
16
|
anim1ci |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ∧ 0 < ( ( 𝑁 + 1 ) / 2 ) ) ) |
18 |
|
elnnz |
⊢ ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ ↔ ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ∧ 0 < ( ( 𝑁 + 1 ) / 2 ) ) ) |
19 |
17 18
|
sylibr |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) → ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ ) |
20 |
19
|
ex |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ → ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ ) ) |
21 |
|
nnz |
⊢ ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ → ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) |
22 |
20 21
|
impbid1 |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ↔ ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ ) ) |
23 |
3 22
|
bitrd |
⊢ ( 𝑁 ∈ ℕ → ( ¬ 2 ∥ 𝑁 ↔ ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ ) ) |