Step |
Hyp |
Ref |
Expression |
1 |
|
eldifi |
⊢ ( 𝑁 ∈ ( ℙ ∖ { 2 } ) → 𝑁 ∈ ℙ ) |
2 |
|
oddn2prm |
⊢ ( 𝑁 ∈ ( ℙ ∖ { 2 } ) → ¬ 2 ∥ 𝑁 ) |
3 |
1 2
|
jca |
⊢ ( 𝑁 ∈ ( ℙ ∖ { 2 } ) → ( 𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁 ) ) |
4 |
|
simpl |
⊢ ( ( 𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁 ) → 𝑁 ∈ ℙ ) |
5 |
|
z2even |
⊢ 2 ∥ 2 |
6 |
|
breq2 |
⊢ ( 𝑁 = 2 → ( 2 ∥ 𝑁 ↔ 2 ∥ 2 ) ) |
7 |
5 6
|
mpbiri |
⊢ ( 𝑁 = 2 → 2 ∥ 𝑁 ) |
8 |
7
|
a1i |
⊢ ( 𝑁 ∈ ℙ → ( 𝑁 = 2 → 2 ∥ 𝑁 ) ) |
9 |
8
|
con3dimp |
⊢ ( ( 𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁 ) → ¬ 𝑁 = 2 ) |
10 |
9
|
neqned |
⊢ ( ( 𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁 ) → 𝑁 ≠ 2 ) |
11 |
|
nelsn |
⊢ ( 𝑁 ≠ 2 → ¬ 𝑁 ∈ { 2 } ) |
12 |
10 11
|
syl |
⊢ ( ( 𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁 ) → ¬ 𝑁 ∈ { 2 } ) |
13 |
4 12
|
eldifd |
⊢ ( ( 𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁 ) → 𝑁 ∈ ( ℙ ∖ { 2 } ) ) |
14 |
3 13
|
impbii |
⊢ ( 𝑁 ∈ ( ℙ ∖ { 2 } ) ↔ ( 𝑁 ∈ ℙ ∧ ¬ 2 ∥ 𝑁 ) ) |