Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
The natural numbers (i.e., finite ordinals)
nnord
Next ⟩
trom
Metamath Proof Explorer
Ascii
Structured
Theorem
nnord
Description:
A natural number is ordinal.
(Contributed by
NM
, 17-Oct-1995)
Ref
Expression
Assertion
nnord
⊢
(
𝐴
∈ ω → Ord
𝐴
)
Proof
Step
Hyp
Ref
Expression
1
nnon
⊢
(
𝐴
∈ ω →
𝐴
∈ On )
2
eloni
⊢
(
𝐴
∈ On → Ord
𝐴
)
3
1
2
syl
⊢
(
𝐴
∈ ω → Ord
𝐴
)