Metamath Proof Explorer


Theorem nnpw2evenALTV

Description: 2 to the power of a positive integer is even. (Contributed by AV, 2-Jun-2020) (Revised by AV, 20-Jun-2020)

Ref Expression
Assertion nnpw2evenALTV ( 𝑁 ∈ ℕ → ( 2 ↑ 𝑁 ) ∈ Even )

Proof

Step Hyp Ref Expression
1 2z 2 ∈ ℤ
2 nnnn0 ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 )
3 zexpcl ( ( 2 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 2 ↑ 𝑁 ) ∈ ℤ )
4 1 2 3 sylancr ( 𝑁 ∈ ℕ → ( 2 ↑ 𝑁 ) ∈ ℤ )
5 iddvdsexp ( ( 2 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 2 ∥ ( 2 ↑ 𝑁 ) )
6 1 5 mpan ( 𝑁 ∈ ℕ → 2 ∥ ( 2 ↑ 𝑁 ) )
7 iseven2 ( ( 2 ↑ 𝑁 ) ∈ Even ↔ ( ( 2 ↑ 𝑁 ) ∈ ℤ ∧ 2 ∥ ( 2 ↑ 𝑁 ) ) )
8 4 6 7 sylanbrc ( 𝑁 ∈ ℕ → ( 2 ↑ 𝑁 ) ∈ Even )