Step |
Hyp |
Ref |
Expression |
1 |
|
nnge1 |
⊢ ( 𝐴 ∈ ℕ → 1 ≤ 𝐴 ) |
2 |
|
0lt1 |
⊢ 0 < 1 |
3 |
|
nnre |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℝ ) |
4 |
|
0re |
⊢ 0 ∈ ℝ |
5 |
|
1re |
⊢ 1 ∈ ℝ |
6 |
|
ltletr |
⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 0 < 1 ∧ 1 ≤ 𝐴 ) → 0 < 𝐴 ) ) |
7 |
4 5 6
|
mp3an12 |
⊢ ( 𝐴 ∈ ℝ → ( ( 0 < 1 ∧ 1 ≤ 𝐴 ) → 0 < 𝐴 ) ) |
8 |
|
recgt0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 < ( 1 / 𝐴 ) ) |
9 |
8
|
ex |
⊢ ( 𝐴 ∈ ℝ → ( 0 < 𝐴 → 0 < ( 1 / 𝐴 ) ) ) |
10 |
7 9
|
syld |
⊢ ( 𝐴 ∈ ℝ → ( ( 0 < 1 ∧ 1 ≤ 𝐴 ) → 0 < ( 1 / 𝐴 ) ) ) |
11 |
3 10
|
syl |
⊢ ( 𝐴 ∈ ℕ → ( ( 0 < 1 ∧ 1 ≤ 𝐴 ) → 0 < ( 1 / 𝐴 ) ) ) |
12 |
2 11
|
mpani |
⊢ ( 𝐴 ∈ ℕ → ( 1 ≤ 𝐴 → 0 < ( 1 / 𝐴 ) ) ) |
13 |
1 12
|
mpd |
⊢ ( 𝐴 ∈ ℕ → 0 < ( 1 / 𝐴 ) ) |