Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ∈ ℝ ) |
2 |
|
gt0ne0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ≠ 0 ) |
3 |
1 2
|
rereccld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 / 𝐴 ) ∈ ℝ ) |
4 |
|
arch |
⊢ ( ( 1 / 𝐴 ) ∈ ℝ → ∃ 𝑛 ∈ ℕ ( 1 / 𝐴 ) < 𝑛 ) |
5 |
3 4
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ∃ 𝑛 ∈ ℕ ( 1 / 𝐴 ) < 𝑛 ) |
6 |
|
recgt0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 < ( 1 / 𝐴 ) ) |
7 |
3 6
|
jca |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( ( 1 / 𝐴 ) ∈ ℝ ∧ 0 < ( 1 / 𝐴 ) ) ) |
8 |
|
nnre |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ ) |
9 |
|
nngt0 |
⊢ ( 𝑛 ∈ ℕ → 0 < 𝑛 ) |
10 |
8 9
|
jca |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 ∈ ℝ ∧ 0 < 𝑛 ) ) |
11 |
|
ltrec |
⊢ ( ( ( ( 1 / 𝐴 ) ∈ ℝ ∧ 0 < ( 1 / 𝐴 ) ) ∧ ( 𝑛 ∈ ℝ ∧ 0 < 𝑛 ) ) → ( ( 1 / 𝐴 ) < 𝑛 ↔ ( 1 / 𝑛 ) < ( 1 / ( 1 / 𝐴 ) ) ) ) |
12 |
7 10 11
|
syl2an |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ 𝑛 ∈ ℕ ) → ( ( 1 / 𝐴 ) < 𝑛 ↔ ( 1 / 𝑛 ) < ( 1 / ( 1 / 𝐴 ) ) ) ) |
13 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
14 |
13
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ∈ ℂ ) |
15 |
14 2
|
recrecd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 1 / ( 1 / 𝐴 ) ) = 𝐴 ) |
16 |
15
|
breq2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( ( 1 / 𝑛 ) < ( 1 / ( 1 / 𝐴 ) ) ↔ ( 1 / 𝑛 ) < 𝐴 ) ) |
17 |
16
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ 𝑛 ∈ ℕ ) → ( ( 1 / 𝑛 ) < ( 1 / ( 1 / 𝐴 ) ) ↔ ( 1 / 𝑛 ) < 𝐴 ) ) |
18 |
12 17
|
bitrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ 𝑛 ∈ ℕ ) → ( ( 1 / 𝐴 ) < 𝑛 ↔ ( 1 / 𝑛 ) < 𝐴 ) ) |
19 |
18
|
rexbidva |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( ∃ 𝑛 ∈ ℕ ( 1 / 𝐴 ) < 𝑛 ↔ ∃ 𝑛 ∈ ℕ ( 1 / 𝑛 ) < 𝐴 ) ) |
20 |
5 19
|
mpbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ∃ 𝑛 ∈ ℕ ( 1 / 𝑛 ) < 𝐴 ) |