Metamath Proof Explorer


Theorem nnrecre

Description: The reciprocal of a positive integer is real. (Contributed by NM, 8-Feb-2008)

Ref Expression
Assertion nnrecre ( 𝑁 ∈ ℕ → ( 1 / 𝑁 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 1re 1 ∈ ℝ
2 nndivre ( ( 1 ∈ ℝ ∧ 𝑁 ∈ ℕ ) → ( 1 / 𝑁 ) ∈ ℝ )
3 1 2 mpan ( 𝑁 ∈ ℕ → ( 1 / 𝑁 ) ∈ ℝ )