Metamath Proof Explorer


Theorem nnrp

Description: A positive integer is a positive real. (Contributed by NM, 28-Nov-2008)

Ref Expression
Assertion nnrp ( 𝐴 ∈ ℕ → 𝐴 ∈ ℝ+ )

Proof

Step Hyp Ref Expression
1 nnre ( 𝐴 ∈ ℕ → 𝐴 ∈ ℝ )
2 nngt0 ( 𝐴 ∈ ℕ → 0 < 𝐴 )
3 elrp ( 𝐴 ∈ ℝ+ ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) )
4 1 2 3 sylanbrc ( 𝐴 ∈ ℕ → 𝐴 ∈ ℝ+ )