Metamath Proof Explorer


Theorem nnsdomel

Description: Strict dominance and elementhood are the same for finite ordinals. (Contributed by Stefan O'Rear, 2-Nov-2014)

Ref Expression
Assertion nnsdomel ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴𝐵𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 cardnn ( 𝐴 ∈ ω → ( card ‘ 𝐴 ) = 𝐴 )
2 cardnn ( 𝐵 ∈ ω → ( card ‘ 𝐵 ) = 𝐵 )
3 eleq12 ( ( ( card ‘ 𝐴 ) = 𝐴 ∧ ( card ‘ 𝐵 ) = 𝐵 ) → ( ( card ‘ 𝐴 ) ∈ ( card ‘ 𝐵 ) ↔ 𝐴𝐵 ) )
4 1 2 3 syl2an ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( card ‘ 𝐴 ) ∈ ( card ‘ 𝐵 ) ↔ 𝐴𝐵 ) )
5 nnon ( 𝐴 ∈ ω → 𝐴 ∈ On )
6 onenon ( 𝐴 ∈ On → 𝐴 ∈ dom card )
7 5 6 syl ( 𝐴 ∈ ω → 𝐴 ∈ dom card )
8 nnon ( 𝐵 ∈ ω → 𝐵 ∈ On )
9 onenon ( 𝐵 ∈ On → 𝐵 ∈ dom card )
10 8 9 syl ( 𝐵 ∈ ω → 𝐵 ∈ dom card )
11 cardsdom2 ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ) → ( ( card ‘ 𝐴 ) ∈ ( card ‘ 𝐵 ) ↔ 𝐴𝐵 ) )
12 7 10 11 syl2an ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( card ‘ 𝐴 ) ∈ ( card ‘ 𝐵 ) ↔ 𝐴𝐵 ) )
13 4 12 bitr3d ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴𝐵𝐴𝐵 ) )