Step |
Hyp |
Ref |
Expression |
1 |
|
cardnn |
⊢ ( 𝐴 ∈ ω → ( card ‘ 𝐴 ) = 𝐴 ) |
2 |
|
cardnn |
⊢ ( 𝐵 ∈ ω → ( card ‘ 𝐵 ) = 𝐵 ) |
3 |
|
eleq12 |
⊢ ( ( ( card ‘ 𝐴 ) = 𝐴 ∧ ( card ‘ 𝐵 ) = 𝐵 ) → ( ( card ‘ 𝐴 ) ∈ ( card ‘ 𝐵 ) ↔ 𝐴 ∈ 𝐵 ) ) |
4 |
1 2 3
|
syl2an |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( card ‘ 𝐴 ) ∈ ( card ‘ 𝐵 ) ↔ 𝐴 ∈ 𝐵 ) ) |
5 |
|
nnon |
⊢ ( 𝐴 ∈ ω → 𝐴 ∈ On ) |
6 |
|
onenon |
⊢ ( 𝐴 ∈ On → 𝐴 ∈ dom card ) |
7 |
5 6
|
syl |
⊢ ( 𝐴 ∈ ω → 𝐴 ∈ dom card ) |
8 |
|
nnon |
⊢ ( 𝐵 ∈ ω → 𝐵 ∈ On ) |
9 |
|
onenon |
⊢ ( 𝐵 ∈ On → 𝐵 ∈ dom card ) |
10 |
8 9
|
syl |
⊢ ( 𝐵 ∈ ω → 𝐵 ∈ dom card ) |
11 |
|
cardsdom2 |
⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ) → ( ( card ‘ 𝐴 ) ∈ ( card ‘ 𝐵 ) ↔ 𝐴 ≺ 𝐵 ) ) |
12 |
7 10 11
|
syl2an |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ( card ‘ 𝐴 ) ∈ ( card ‘ 𝐵 ) ↔ 𝐴 ≺ 𝐵 ) ) |
13 |
4 12
|
bitr3d |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ∈ 𝐵 ↔ 𝐴 ≺ 𝐵 ) ) |