Step |
Hyp |
Ref |
Expression |
1 |
|
ssdomg |
⊢ ( ω ∈ V → ( 𝐴 ⊆ ω → 𝐴 ≼ ω ) ) |
2 |
|
ordom |
⊢ Ord ω |
3 |
|
ordelss |
⊢ ( ( Ord ω ∧ 𝐴 ∈ ω ) → 𝐴 ⊆ ω ) |
4 |
2 3
|
mpan |
⊢ ( 𝐴 ∈ ω → 𝐴 ⊆ ω ) |
5 |
1 4
|
impel |
⊢ ( ( ω ∈ V ∧ 𝐴 ∈ ω ) → 𝐴 ≼ ω ) |
6 |
|
ominf |
⊢ ¬ ω ∈ Fin |
7 |
|
ensym |
⊢ ( 𝐴 ≈ ω → ω ≈ 𝐴 ) |
8 |
|
breq2 |
⊢ ( 𝑥 = 𝐴 → ( ω ≈ 𝑥 ↔ ω ≈ 𝐴 ) ) |
9 |
8
|
rspcev |
⊢ ( ( 𝐴 ∈ ω ∧ ω ≈ 𝐴 ) → ∃ 𝑥 ∈ ω ω ≈ 𝑥 ) |
10 |
|
isfi |
⊢ ( ω ∈ Fin ↔ ∃ 𝑥 ∈ ω ω ≈ 𝑥 ) |
11 |
9 10
|
sylibr |
⊢ ( ( 𝐴 ∈ ω ∧ ω ≈ 𝐴 ) → ω ∈ Fin ) |
12 |
11
|
ex |
⊢ ( 𝐴 ∈ ω → ( ω ≈ 𝐴 → ω ∈ Fin ) ) |
13 |
7 12
|
syl5 |
⊢ ( 𝐴 ∈ ω → ( 𝐴 ≈ ω → ω ∈ Fin ) ) |
14 |
6 13
|
mtoi |
⊢ ( 𝐴 ∈ ω → ¬ 𝐴 ≈ ω ) |
15 |
14
|
adantl |
⊢ ( ( ω ∈ V ∧ 𝐴 ∈ ω ) → ¬ 𝐴 ≈ ω ) |
16 |
|
brsdom |
⊢ ( 𝐴 ≺ ω ↔ ( 𝐴 ≼ ω ∧ ¬ 𝐴 ≈ ω ) ) |
17 |
5 15 16
|
sylanbrc |
⊢ ( ( ω ∈ V ∧ 𝐴 ∈ ω ) → 𝐴 ≺ ω ) |