Metamath Proof Explorer


Theorem nnsdomg

Description: Omega strictly dominates a natural number. Example 3 of Enderton p. 146. In order to avoid the Axiom of Infinity, we include it as part of the antecedent. See nnsdom for the version without this sethood requirement. (Contributed by NM, 15-Jun-1998) Avoid ax-pow . (Revised by BTernaryTau, 7-Jan-2025)

Ref Expression
Assertion nnsdomg ( ( ω ∈ V ∧ 𝐴 ∈ ω ) → 𝐴 ≺ ω )

Proof

Step Hyp Ref Expression
1 ordom Ord ω
2 ordelss ( ( Ord ω ∧ 𝐴 ∈ ω ) → 𝐴 ⊆ ω )
3 1 2 mpan ( 𝐴 ∈ ω → 𝐴 ⊆ ω )
4 3 adantr ( ( 𝐴 ∈ ω ∧ ω ∈ V ) → 𝐴 ⊆ ω )
5 nnfi ( 𝐴 ∈ ω → 𝐴 ∈ Fin )
6 ssdomfi2 ( ( 𝐴 ∈ Fin ∧ ω ∈ V ∧ 𝐴 ⊆ ω ) → 𝐴 ≼ ω )
7 5 6 syl3an1 ( ( 𝐴 ∈ ω ∧ ω ∈ V ∧ 𝐴 ⊆ ω ) → 𝐴 ≼ ω )
8 4 7 mpd3an3 ( ( 𝐴 ∈ ω ∧ ω ∈ V ) → 𝐴 ≼ ω )
9 8 ancoms ( ( ω ∈ V ∧ 𝐴 ∈ ω ) → 𝐴 ≼ ω )
10 ominf ¬ ω ∈ Fin
11 ensymfib ( 𝐴 ∈ Fin → ( 𝐴 ≈ ω ↔ ω ≈ 𝐴 ) )
12 5 11 syl ( 𝐴 ∈ ω → ( 𝐴 ≈ ω ↔ ω ≈ 𝐴 ) )
13 breq2 ( 𝑥 = 𝐴 → ( ω ≈ 𝑥 ↔ ω ≈ 𝐴 ) )
14 13 rspcev ( ( 𝐴 ∈ ω ∧ ω ≈ 𝐴 ) → ∃ 𝑥 ∈ ω ω ≈ 𝑥 )
15 isfi ( ω ∈ Fin ↔ ∃ 𝑥 ∈ ω ω ≈ 𝑥 )
16 14 15 sylibr ( ( 𝐴 ∈ ω ∧ ω ≈ 𝐴 ) → ω ∈ Fin )
17 16 ex ( 𝐴 ∈ ω → ( ω ≈ 𝐴 → ω ∈ Fin ) )
18 12 17 sylbid ( 𝐴 ∈ ω → ( 𝐴 ≈ ω → ω ∈ Fin ) )
19 10 18 mtoi ( 𝐴 ∈ ω → ¬ 𝐴 ≈ ω )
20 19 adantl ( ( ω ∈ V ∧ 𝐴 ∈ ω ) → ¬ 𝐴 ≈ ω )
21 brsdom ( 𝐴 ≺ ω ↔ ( 𝐴 ≼ ω ∧ ¬ 𝐴 ≈ ω ) )
22 9 20 21 sylanbrc ( ( ω ∈ V ∧ 𝐴 ∈ ω ) → 𝐴 ≺ ω )