| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssdomg | ⊢ ( ω  ∈  V  →  ( 𝐴  ⊆  ω  →  𝐴  ≼  ω ) ) | 
						
							| 2 |  | ordom | ⊢ Ord  ω | 
						
							| 3 |  | ordelss | ⊢ ( ( Ord  ω  ∧  𝐴  ∈  ω )  →  𝐴  ⊆  ω ) | 
						
							| 4 | 2 3 | mpan | ⊢ ( 𝐴  ∈  ω  →  𝐴  ⊆  ω ) | 
						
							| 5 | 1 4 | impel | ⊢ ( ( ω  ∈  V  ∧  𝐴  ∈  ω )  →  𝐴  ≼  ω ) | 
						
							| 6 |  | ominf | ⊢ ¬  ω  ∈  Fin | 
						
							| 7 |  | ensym | ⊢ ( 𝐴  ≈  ω  →  ω  ≈  𝐴 ) | 
						
							| 8 |  | breq2 | ⊢ ( 𝑥  =  𝐴  →  ( ω  ≈  𝑥  ↔  ω  ≈  𝐴 ) ) | 
						
							| 9 | 8 | rspcev | ⊢ ( ( 𝐴  ∈  ω  ∧  ω  ≈  𝐴 )  →  ∃ 𝑥  ∈  ω ω  ≈  𝑥 ) | 
						
							| 10 |  | isfi | ⊢ ( ω  ∈  Fin  ↔  ∃ 𝑥  ∈  ω ω  ≈  𝑥 ) | 
						
							| 11 | 9 10 | sylibr | ⊢ ( ( 𝐴  ∈  ω  ∧  ω  ≈  𝐴 )  →  ω  ∈  Fin ) | 
						
							| 12 | 11 | ex | ⊢ ( 𝐴  ∈  ω  →  ( ω  ≈  𝐴  →  ω  ∈  Fin ) ) | 
						
							| 13 | 7 12 | syl5 | ⊢ ( 𝐴  ∈  ω  →  ( 𝐴  ≈  ω  →  ω  ∈  Fin ) ) | 
						
							| 14 | 6 13 | mtoi | ⊢ ( 𝐴  ∈  ω  →  ¬  𝐴  ≈  ω ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( ω  ∈  V  ∧  𝐴  ∈  ω )  →  ¬  𝐴  ≈  ω ) | 
						
							| 16 |  | brsdom | ⊢ ( 𝐴  ≺  ω  ↔  ( 𝐴  ≼  ω  ∧  ¬  𝐴  ≈  ω ) ) | 
						
							| 17 | 5 15 16 | sylanbrc | ⊢ ( ( ω  ∈  V  ∧  𝐴  ∈  ω )  →  𝐴  ≺  ω ) |