Metamath Proof Explorer


Theorem nnsplit

Description: Express the set of positive integers as the disjoint (see nnuzdisj ) union of the first N values and the rest. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Assertion nnsplit ( 𝑁 ∈ ℕ → ℕ = ( ( 1 ... 𝑁 ) ∪ ( ℤ ‘ ( 𝑁 + 1 ) ) ) )

Proof

Step Hyp Ref Expression
1 nnuz ℕ = ( ℤ ‘ 1 )
2 1 a1i ( 𝑁 ∈ ℕ → ℕ = ( ℤ ‘ 1 ) )
3 peano2nn ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℕ )
4 3 1 eleqtrdi ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ( ℤ ‘ 1 ) )
5 uzsplit ( ( 𝑁 + 1 ) ∈ ( ℤ ‘ 1 ) → ( ℤ ‘ 1 ) = ( ( 1 ... ( ( 𝑁 + 1 ) − 1 ) ) ∪ ( ℤ ‘ ( 𝑁 + 1 ) ) ) )
6 4 5 syl ( 𝑁 ∈ ℕ → ( ℤ ‘ 1 ) = ( ( 1 ... ( ( 𝑁 + 1 ) − 1 ) ) ∪ ( ℤ ‘ ( 𝑁 + 1 ) ) ) )
7 nncn ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ )
8 1cnd ( 𝑁 ∈ ℕ → 1 ∈ ℂ )
9 7 8 pncand ( 𝑁 ∈ ℕ → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 )
10 9 oveq2d ( 𝑁 ∈ ℕ → ( 1 ... ( ( 𝑁 + 1 ) − 1 ) ) = ( 1 ... 𝑁 ) )
11 10 uneq1d ( 𝑁 ∈ ℕ → ( ( 1 ... ( ( 𝑁 + 1 ) − 1 ) ) ∪ ( ℤ ‘ ( 𝑁 + 1 ) ) ) = ( ( 1 ... 𝑁 ) ∪ ( ℤ ‘ ( 𝑁 + 1 ) ) ) )
12 2 6 11 3eqtrd ( 𝑁 ∈ ℕ → ℕ = ( ( 1 ... 𝑁 ) ∪ ( ℤ ‘ ( 𝑁 + 1 ) ) ) )