Step |
Hyp |
Ref |
Expression |
1 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
2 |
1
|
a1i |
⊢ ( 𝑁 ∈ ℕ → ℕ = ( ℤ≥ ‘ 1 ) ) |
3 |
|
peano2nn |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℕ ) |
4 |
3 1
|
eleqtrdi |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
5 |
|
uzsplit |
⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 1 ) → ( ℤ≥ ‘ 1 ) = ( ( 1 ... ( ( 𝑁 + 1 ) − 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
6 |
4 5
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( ℤ≥ ‘ 1 ) = ( ( 1 ... ( ( 𝑁 + 1 ) − 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
7 |
|
nncn |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) |
8 |
|
1cnd |
⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℂ ) |
9 |
7 8
|
pncand |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
10 |
9
|
oveq2d |
⊢ ( 𝑁 ∈ ℕ → ( 1 ... ( ( 𝑁 + 1 ) − 1 ) ) = ( 1 ... 𝑁 ) ) |
11 |
10
|
uneq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( 1 ... ( ( 𝑁 + 1 ) − 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = ( ( 1 ... 𝑁 ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
12 |
2 6 11
|
3eqtrd |
⊢ ( 𝑁 ∈ ℕ → ℕ = ( ( 1 ... 𝑁 ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |