Description: The naturals are closed under squaring. (Contributed by Scott Fenton, 29-Mar-2014) (Revised by Mario Carneiro, 19-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | nnsqcl | ⊢ ( 𝐴 ∈ ℕ → ( 𝐴 ↑ 2 ) ∈ ℕ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nncn | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℂ ) | |
2 | sqval | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 ) ) | |
3 | 1 2 | syl | ⊢ ( 𝐴 ∈ ℕ → ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 ) ) |
4 | nnmulcl | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∈ ℕ ) → ( 𝐴 · 𝐴 ) ∈ ℕ ) | |
5 | 4 | anidms | ⊢ ( 𝐴 ∈ ℕ → ( 𝐴 · 𝐴 ) ∈ ℕ ) |
6 | 3 5 | eqeltrd | ⊢ ( 𝐴 ∈ ℕ → ( 𝐴 ↑ 2 ) ∈ ℕ ) |