Metamath Proof Explorer
Description: The positive integers are a subset of the reals. (Contributed by NM, 10-Jan-1997) (Revised by Mario Carneiro, 16-Jun-2013)
|
|
Ref |
Expression |
|
Assertion |
nnssre |
⊢ ℕ ⊆ ℝ |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1re |
⊢ 1 ∈ ℝ |
| 2 |
|
peano2re |
⊢ ( 𝑥 ∈ ℝ → ( 𝑥 + 1 ) ∈ ℝ ) |
| 3 |
2
|
rgen |
⊢ ∀ 𝑥 ∈ ℝ ( 𝑥 + 1 ) ∈ ℝ |
| 4 |
|
peano5nni |
⊢ ( ( 1 ∈ ℝ ∧ ∀ 𝑥 ∈ ℝ ( 𝑥 + 1 ) ∈ ℝ ) → ℕ ⊆ ℝ ) |
| 5 |
1 3 4
|
mp2an |
⊢ ℕ ⊆ ℝ |