Metamath Proof Explorer


Theorem nnssz

Description: Positive integers are a subset of integers. (Contributed by NM, 9-Jan-2002) Reduce dependencies on axioms. (Revised by Steven Nguyen, 29-Nov-2022)

Ref Expression
Assertion nnssz ℕ ⊆ ℤ

Proof

Step Hyp Ref Expression
1 nnre ( 𝑥 ∈ ℕ → 𝑥 ∈ ℝ )
2 3mix2 ( 𝑥 ∈ ℕ → ( 𝑥 = 0 ∨ 𝑥 ∈ ℕ ∨ - 𝑥 ∈ ℕ ) )
3 elz ( 𝑥 ∈ ℤ ↔ ( 𝑥 ∈ ℝ ∧ ( 𝑥 = 0 ∨ 𝑥 ∈ ℕ ∨ - 𝑥 ∈ ℕ ) ) )
4 1 2 3 sylanbrc ( 𝑥 ∈ ℕ → 𝑥 ∈ ℤ )
5 4 ssriv ℕ ⊆ ℤ