Step |
Hyp |
Ref |
Expression |
1 |
|
breq2 |
⊢ ( 𝑥 = 1 → ( 𝑧 < 𝑥 ↔ 𝑧 < 1 ) ) |
2 |
|
oveq1 |
⊢ ( 𝑥 = 1 → ( 𝑥 − 𝑧 ) = ( 1 − 𝑧 ) ) |
3 |
2
|
eleq1d |
⊢ ( 𝑥 = 1 → ( ( 𝑥 − 𝑧 ) ∈ ℕ ↔ ( 1 − 𝑧 ) ∈ ℕ ) ) |
4 |
1 3
|
imbi12d |
⊢ ( 𝑥 = 1 → ( ( 𝑧 < 𝑥 → ( 𝑥 − 𝑧 ) ∈ ℕ ) ↔ ( 𝑧 < 1 → ( 1 − 𝑧 ) ∈ ℕ ) ) ) |
5 |
4
|
ralbidv |
⊢ ( 𝑥 = 1 → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑥 → ( 𝑥 − 𝑧 ) ∈ ℕ ) ↔ ∀ 𝑧 ∈ ℕ ( 𝑧 < 1 → ( 1 − 𝑧 ) ∈ ℕ ) ) ) |
6 |
|
breq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑧 < 𝑥 ↔ 𝑧 < 𝑦 ) ) |
7 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 − 𝑧 ) = ( 𝑦 − 𝑧 ) ) |
8 |
7
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 − 𝑧 ) ∈ ℕ ↔ ( 𝑦 − 𝑧 ) ∈ ℕ ) ) |
9 |
6 8
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑧 < 𝑥 → ( 𝑥 − 𝑧 ) ∈ ℕ ) ↔ ( 𝑧 < 𝑦 → ( 𝑦 − 𝑧 ) ∈ ℕ ) ) ) |
10 |
9
|
ralbidv |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑥 → ( 𝑥 − 𝑧 ) ∈ ℕ ) ↔ ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑦 → ( 𝑦 − 𝑧 ) ∈ ℕ ) ) ) |
11 |
|
breq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑧 < 𝑥 ↔ 𝑧 < ( 𝑦 + 1 ) ) ) |
12 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 − 𝑧 ) = ( ( 𝑦 + 1 ) − 𝑧 ) ) |
13 |
12
|
eleq1d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑥 − 𝑧 ) ∈ ℕ ↔ ( ( 𝑦 + 1 ) − 𝑧 ) ∈ ℕ ) ) |
14 |
11 13
|
imbi12d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑧 < 𝑥 → ( 𝑥 − 𝑧 ) ∈ ℕ ) ↔ ( 𝑧 < ( 𝑦 + 1 ) → ( ( 𝑦 + 1 ) − 𝑧 ) ∈ ℕ ) ) ) |
15 |
14
|
ralbidv |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑥 → ( 𝑥 − 𝑧 ) ∈ ℕ ) ↔ ∀ 𝑧 ∈ ℕ ( 𝑧 < ( 𝑦 + 1 ) → ( ( 𝑦 + 1 ) − 𝑧 ) ∈ ℕ ) ) ) |
16 |
|
breq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝑧 < 𝑥 ↔ 𝑧 < 𝐵 ) ) |
17 |
|
oveq1 |
⊢ ( 𝑥 = 𝐵 → ( 𝑥 − 𝑧 ) = ( 𝐵 − 𝑧 ) ) |
18 |
17
|
eleq1d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝑥 − 𝑧 ) ∈ ℕ ↔ ( 𝐵 − 𝑧 ) ∈ ℕ ) ) |
19 |
16 18
|
imbi12d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝑧 < 𝑥 → ( 𝑥 − 𝑧 ) ∈ ℕ ) ↔ ( 𝑧 < 𝐵 → ( 𝐵 − 𝑧 ) ∈ ℕ ) ) ) |
20 |
19
|
ralbidv |
⊢ ( 𝑥 = 𝐵 → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑥 → ( 𝑥 − 𝑧 ) ∈ ℕ ) ↔ ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝐵 → ( 𝐵 − 𝑧 ) ∈ ℕ ) ) ) |
21 |
|
nnnlt1 |
⊢ ( 𝑧 ∈ ℕ → ¬ 𝑧 < 1 ) |
22 |
21
|
pm2.21d |
⊢ ( 𝑧 ∈ ℕ → ( 𝑧 < 1 → ( 1 − 𝑧 ) ∈ ℕ ) ) |
23 |
22
|
rgen |
⊢ ∀ 𝑧 ∈ ℕ ( 𝑧 < 1 → ( 1 − 𝑧 ) ∈ ℕ ) |
24 |
|
breq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 < 𝑦 ↔ 𝑥 < 𝑦 ) ) |
25 |
|
oveq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝑦 − 𝑧 ) = ( 𝑦 − 𝑥 ) ) |
26 |
25
|
eleq1d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑦 − 𝑧 ) ∈ ℕ ↔ ( 𝑦 − 𝑥 ) ∈ ℕ ) ) |
27 |
24 26
|
imbi12d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑧 < 𝑦 → ( 𝑦 − 𝑧 ) ∈ ℕ ) ↔ ( 𝑥 < 𝑦 → ( 𝑦 − 𝑥 ) ∈ ℕ ) ) ) |
28 |
27
|
cbvralvw |
⊢ ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑦 → ( 𝑦 − 𝑧 ) ∈ ℕ ) ↔ ∀ 𝑥 ∈ ℕ ( 𝑥 < 𝑦 → ( 𝑦 − 𝑥 ) ∈ ℕ ) ) |
29 |
|
nncn |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℂ ) |
30 |
29
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → 𝑦 ∈ ℂ ) |
31 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
32 |
|
pncan |
⊢ ( ( 𝑦 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑦 + 1 ) − 1 ) = 𝑦 ) |
33 |
30 31 32
|
sylancl |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( ( 𝑦 + 1 ) − 1 ) = 𝑦 ) |
34 |
|
simpl |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → 𝑦 ∈ ℕ ) |
35 |
33 34
|
eqeltrd |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( ( 𝑦 + 1 ) − 1 ) ∈ ℕ ) |
36 |
|
oveq2 |
⊢ ( 𝑧 = 1 → ( ( 𝑦 + 1 ) − 𝑧 ) = ( ( 𝑦 + 1 ) − 1 ) ) |
37 |
36
|
eleq1d |
⊢ ( 𝑧 = 1 → ( ( ( 𝑦 + 1 ) − 𝑧 ) ∈ ℕ ↔ ( ( 𝑦 + 1 ) − 1 ) ∈ ℕ ) ) |
38 |
35 37
|
syl5ibrcom |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( 𝑧 = 1 → ( ( 𝑦 + 1 ) − 𝑧 ) ∈ ℕ ) ) |
39 |
38
|
2a1dd |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( 𝑧 = 1 → ( ∀ 𝑥 ∈ ℕ ( 𝑥 < 𝑦 → ( 𝑦 − 𝑥 ) ∈ ℕ ) → ( 𝑧 < ( 𝑦 + 1 ) → ( ( 𝑦 + 1 ) − 𝑧 ) ∈ ℕ ) ) ) ) |
40 |
|
breq1 |
⊢ ( 𝑥 = ( 𝑧 − 1 ) → ( 𝑥 < 𝑦 ↔ ( 𝑧 − 1 ) < 𝑦 ) ) |
41 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑧 − 1 ) → ( 𝑦 − 𝑥 ) = ( 𝑦 − ( 𝑧 − 1 ) ) ) |
42 |
41
|
eleq1d |
⊢ ( 𝑥 = ( 𝑧 − 1 ) → ( ( 𝑦 − 𝑥 ) ∈ ℕ ↔ ( 𝑦 − ( 𝑧 − 1 ) ) ∈ ℕ ) ) |
43 |
40 42
|
imbi12d |
⊢ ( 𝑥 = ( 𝑧 − 1 ) → ( ( 𝑥 < 𝑦 → ( 𝑦 − 𝑥 ) ∈ ℕ ) ↔ ( ( 𝑧 − 1 ) < 𝑦 → ( 𝑦 − ( 𝑧 − 1 ) ) ∈ ℕ ) ) ) |
44 |
43
|
rspcv |
⊢ ( ( 𝑧 − 1 ) ∈ ℕ → ( ∀ 𝑥 ∈ ℕ ( 𝑥 < 𝑦 → ( 𝑦 − 𝑥 ) ∈ ℕ ) → ( ( 𝑧 − 1 ) < 𝑦 → ( 𝑦 − ( 𝑧 − 1 ) ) ∈ ℕ ) ) ) |
45 |
|
nnre |
⊢ ( 𝑧 ∈ ℕ → 𝑧 ∈ ℝ ) |
46 |
|
nnre |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℝ ) |
47 |
|
1re |
⊢ 1 ∈ ℝ |
48 |
|
ltsubadd |
⊢ ( ( 𝑧 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 𝑧 − 1 ) < 𝑦 ↔ 𝑧 < ( 𝑦 + 1 ) ) ) |
49 |
47 48
|
mp3an2 |
⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 𝑧 − 1 ) < 𝑦 ↔ 𝑧 < ( 𝑦 + 1 ) ) ) |
50 |
45 46 49
|
syl2anr |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( ( 𝑧 − 1 ) < 𝑦 ↔ 𝑧 < ( 𝑦 + 1 ) ) ) |
51 |
|
nncn |
⊢ ( 𝑧 ∈ ℕ → 𝑧 ∈ ℂ ) |
52 |
|
subsub3 |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑦 − ( 𝑧 − 1 ) ) = ( ( 𝑦 + 1 ) − 𝑧 ) ) |
53 |
31 52
|
mp3an3 |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( 𝑦 − ( 𝑧 − 1 ) ) = ( ( 𝑦 + 1 ) − 𝑧 ) ) |
54 |
29 51 53
|
syl2an |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( 𝑦 − ( 𝑧 − 1 ) ) = ( ( 𝑦 + 1 ) − 𝑧 ) ) |
55 |
54
|
eleq1d |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( ( 𝑦 − ( 𝑧 − 1 ) ) ∈ ℕ ↔ ( ( 𝑦 + 1 ) − 𝑧 ) ∈ ℕ ) ) |
56 |
50 55
|
imbi12d |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( ( ( 𝑧 − 1 ) < 𝑦 → ( 𝑦 − ( 𝑧 − 1 ) ) ∈ ℕ ) ↔ ( 𝑧 < ( 𝑦 + 1 ) → ( ( 𝑦 + 1 ) − 𝑧 ) ∈ ℕ ) ) ) |
57 |
56
|
biimpd |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( ( ( 𝑧 − 1 ) < 𝑦 → ( 𝑦 − ( 𝑧 − 1 ) ) ∈ ℕ ) → ( 𝑧 < ( 𝑦 + 1 ) → ( ( 𝑦 + 1 ) − 𝑧 ) ∈ ℕ ) ) ) |
58 |
44 57
|
syl9r |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( ( 𝑧 − 1 ) ∈ ℕ → ( ∀ 𝑥 ∈ ℕ ( 𝑥 < 𝑦 → ( 𝑦 − 𝑥 ) ∈ ℕ ) → ( 𝑧 < ( 𝑦 + 1 ) → ( ( 𝑦 + 1 ) − 𝑧 ) ∈ ℕ ) ) ) ) |
59 |
|
nn1m1nn |
⊢ ( 𝑧 ∈ ℕ → ( 𝑧 = 1 ∨ ( 𝑧 − 1 ) ∈ ℕ ) ) |
60 |
59
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( 𝑧 = 1 ∨ ( 𝑧 − 1 ) ∈ ℕ ) ) |
61 |
39 58 60
|
mpjaod |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( ∀ 𝑥 ∈ ℕ ( 𝑥 < 𝑦 → ( 𝑦 − 𝑥 ) ∈ ℕ ) → ( 𝑧 < ( 𝑦 + 1 ) → ( ( 𝑦 + 1 ) − 𝑧 ) ∈ ℕ ) ) ) |
62 |
61
|
ralrimdva |
⊢ ( 𝑦 ∈ ℕ → ( ∀ 𝑥 ∈ ℕ ( 𝑥 < 𝑦 → ( 𝑦 − 𝑥 ) ∈ ℕ ) → ∀ 𝑧 ∈ ℕ ( 𝑧 < ( 𝑦 + 1 ) → ( ( 𝑦 + 1 ) − 𝑧 ) ∈ ℕ ) ) ) |
63 |
28 62
|
syl5bi |
⊢ ( 𝑦 ∈ ℕ → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑦 → ( 𝑦 − 𝑧 ) ∈ ℕ ) → ∀ 𝑧 ∈ ℕ ( 𝑧 < ( 𝑦 + 1 ) → ( ( 𝑦 + 1 ) − 𝑧 ) ∈ ℕ ) ) ) |
64 |
5 10 15 20 23 63
|
nnind |
⊢ ( 𝐵 ∈ ℕ → ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝐵 → ( 𝐵 − 𝑧 ) ∈ ℕ ) ) |
65 |
|
breq1 |
⊢ ( 𝑧 = 𝐴 → ( 𝑧 < 𝐵 ↔ 𝐴 < 𝐵 ) ) |
66 |
|
oveq2 |
⊢ ( 𝑧 = 𝐴 → ( 𝐵 − 𝑧 ) = ( 𝐵 − 𝐴 ) ) |
67 |
66
|
eleq1d |
⊢ ( 𝑧 = 𝐴 → ( ( 𝐵 − 𝑧 ) ∈ ℕ ↔ ( 𝐵 − 𝐴 ) ∈ ℕ ) ) |
68 |
65 67
|
imbi12d |
⊢ ( 𝑧 = 𝐴 → ( ( 𝑧 < 𝐵 → ( 𝐵 − 𝑧 ) ∈ ℕ ) ↔ ( 𝐴 < 𝐵 → ( 𝐵 − 𝐴 ) ∈ ℕ ) ) ) |
69 |
68
|
rspcva |
⊢ ( ( 𝐴 ∈ ℕ ∧ ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝐵 → ( 𝐵 − 𝑧 ) ∈ ℕ ) ) → ( 𝐴 < 𝐵 → ( 𝐵 − 𝐴 ) ∈ ℕ ) ) |
70 |
64 69
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 < 𝐵 → ( 𝐵 − 𝐴 ) ∈ ℕ ) ) |
71 |
|
nngt0 |
⊢ ( ( 𝐵 − 𝐴 ) ∈ ℕ → 0 < ( 𝐵 − 𝐴 ) ) |
72 |
|
nnre |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℝ ) |
73 |
|
nnre |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℝ ) |
74 |
|
posdif |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ 0 < ( 𝐵 − 𝐴 ) ) ) |
75 |
72 73 74
|
syl2an |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 < 𝐵 ↔ 0 < ( 𝐵 − 𝐴 ) ) ) |
76 |
71 75
|
syl5ibr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐵 − 𝐴 ) ∈ ℕ → 𝐴 < 𝐵 ) ) |
77 |
70 76
|
impbid |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 < 𝐵 ↔ ( 𝐵 − 𝐴 ) ∈ ℕ ) ) |