| Step |
Hyp |
Ref |
Expression |
| 1 |
|
breq2 |
⊢ ( 𝑥 = 1 → ( 𝑧 < 𝑥 ↔ 𝑧 < 1 ) ) |
| 2 |
|
oveq1 |
⊢ ( 𝑥 = 1 → ( 𝑥 − 𝑧 ) = ( 1 − 𝑧 ) ) |
| 3 |
2
|
eleq1d |
⊢ ( 𝑥 = 1 → ( ( 𝑥 − 𝑧 ) ∈ ℕ ↔ ( 1 − 𝑧 ) ∈ ℕ ) ) |
| 4 |
1 3
|
imbi12d |
⊢ ( 𝑥 = 1 → ( ( 𝑧 < 𝑥 → ( 𝑥 − 𝑧 ) ∈ ℕ ) ↔ ( 𝑧 < 1 → ( 1 − 𝑧 ) ∈ ℕ ) ) ) |
| 5 |
4
|
ralbidv |
⊢ ( 𝑥 = 1 → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑥 → ( 𝑥 − 𝑧 ) ∈ ℕ ) ↔ ∀ 𝑧 ∈ ℕ ( 𝑧 < 1 → ( 1 − 𝑧 ) ∈ ℕ ) ) ) |
| 6 |
|
breq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑧 < 𝑥 ↔ 𝑧 < 𝑦 ) ) |
| 7 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 − 𝑧 ) = ( 𝑦 − 𝑧 ) ) |
| 8 |
7
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 − 𝑧 ) ∈ ℕ ↔ ( 𝑦 − 𝑧 ) ∈ ℕ ) ) |
| 9 |
6 8
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑧 < 𝑥 → ( 𝑥 − 𝑧 ) ∈ ℕ ) ↔ ( 𝑧 < 𝑦 → ( 𝑦 − 𝑧 ) ∈ ℕ ) ) ) |
| 10 |
9
|
ralbidv |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑥 → ( 𝑥 − 𝑧 ) ∈ ℕ ) ↔ ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑦 → ( 𝑦 − 𝑧 ) ∈ ℕ ) ) ) |
| 11 |
|
breq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑧 < 𝑥 ↔ 𝑧 < ( 𝑦 + 1 ) ) ) |
| 12 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 − 𝑧 ) = ( ( 𝑦 + 1 ) − 𝑧 ) ) |
| 13 |
12
|
eleq1d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑥 − 𝑧 ) ∈ ℕ ↔ ( ( 𝑦 + 1 ) − 𝑧 ) ∈ ℕ ) ) |
| 14 |
11 13
|
imbi12d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑧 < 𝑥 → ( 𝑥 − 𝑧 ) ∈ ℕ ) ↔ ( 𝑧 < ( 𝑦 + 1 ) → ( ( 𝑦 + 1 ) − 𝑧 ) ∈ ℕ ) ) ) |
| 15 |
14
|
ralbidv |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑥 → ( 𝑥 − 𝑧 ) ∈ ℕ ) ↔ ∀ 𝑧 ∈ ℕ ( 𝑧 < ( 𝑦 + 1 ) → ( ( 𝑦 + 1 ) − 𝑧 ) ∈ ℕ ) ) ) |
| 16 |
|
breq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝑧 < 𝑥 ↔ 𝑧 < 𝐵 ) ) |
| 17 |
|
oveq1 |
⊢ ( 𝑥 = 𝐵 → ( 𝑥 − 𝑧 ) = ( 𝐵 − 𝑧 ) ) |
| 18 |
17
|
eleq1d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝑥 − 𝑧 ) ∈ ℕ ↔ ( 𝐵 − 𝑧 ) ∈ ℕ ) ) |
| 19 |
16 18
|
imbi12d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝑧 < 𝑥 → ( 𝑥 − 𝑧 ) ∈ ℕ ) ↔ ( 𝑧 < 𝐵 → ( 𝐵 − 𝑧 ) ∈ ℕ ) ) ) |
| 20 |
19
|
ralbidv |
⊢ ( 𝑥 = 𝐵 → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑥 → ( 𝑥 − 𝑧 ) ∈ ℕ ) ↔ ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝐵 → ( 𝐵 − 𝑧 ) ∈ ℕ ) ) ) |
| 21 |
|
nnnlt1 |
⊢ ( 𝑧 ∈ ℕ → ¬ 𝑧 < 1 ) |
| 22 |
21
|
pm2.21d |
⊢ ( 𝑧 ∈ ℕ → ( 𝑧 < 1 → ( 1 − 𝑧 ) ∈ ℕ ) ) |
| 23 |
22
|
rgen |
⊢ ∀ 𝑧 ∈ ℕ ( 𝑧 < 1 → ( 1 − 𝑧 ) ∈ ℕ ) |
| 24 |
|
breq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 < 𝑦 ↔ 𝑥 < 𝑦 ) ) |
| 25 |
|
oveq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝑦 − 𝑧 ) = ( 𝑦 − 𝑥 ) ) |
| 26 |
25
|
eleq1d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑦 − 𝑧 ) ∈ ℕ ↔ ( 𝑦 − 𝑥 ) ∈ ℕ ) ) |
| 27 |
24 26
|
imbi12d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑧 < 𝑦 → ( 𝑦 − 𝑧 ) ∈ ℕ ) ↔ ( 𝑥 < 𝑦 → ( 𝑦 − 𝑥 ) ∈ ℕ ) ) ) |
| 28 |
27
|
cbvralvw |
⊢ ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑦 → ( 𝑦 − 𝑧 ) ∈ ℕ ) ↔ ∀ 𝑥 ∈ ℕ ( 𝑥 < 𝑦 → ( 𝑦 − 𝑥 ) ∈ ℕ ) ) |
| 29 |
|
nncn |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℂ ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → 𝑦 ∈ ℂ ) |
| 31 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 32 |
|
pncan |
⊢ ( ( 𝑦 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑦 + 1 ) − 1 ) = 𝑦 ) |
| 33 |
30 31 32
|
sylancl |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( ( 𝑦 + 1 ) − 1 ) = 𝑦 ) |
| 34 |
|
simpl |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → 𝑦 ∈ ℕ ) |
| 35 |
33 34
|
eqeltrd |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( ( 𝑦 + 1 ) − 1 ) ∈ ℕ ) |
| 36 |
|
oveq2 |
⊢ ( 𝑧 = 1 → ( ( 𝑦 + 1 ) − 𝑧 ) = ( ( 𝑦 + 1 ) − 1 ) ) |
| 37 |
36
|
eleq1d |
⊢ ( 𝑧 = 1 → ( ( ( 𝑦 + 1 ) − 𝑧 ) ∈ ℕ ↔ ( ( 𝑦 + 1 ) − 1 ) ∈ ℕ ) ) |
| 38 |
35 37
|
syl5ibrcom |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( 𝑧 = 1 → ( ( 𝑦 + 1 ) − 𝑧 ) ∈ ℕ ) ) |
| 39 |
38
|
2a1dd |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( 𝑧 = 1 → ( ∀ 𝑥 ∈ ℕ ( 𝑥 < 𝑦 → ( 𝑦 − 𝑥 ) ∈ ℕ ) → ( 𝑧 < ( 𝑦 + 1 ) → ( ( 𝑦 + 1 ) − 𝑧 ) ∈ ℕ ) ) ) ) |
| 40 |
|
breq1 |
⊢ ( 𝑥 = ( 𝑧 − 1 ) → ( 𝑥 < 𝑦 ↔ ( 𝑧 − 1 ) < 𝑦 ) ) |
| 41 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑧 − 1 ) → ( 𝑦 − 𝑥 ) = ( 𝑦 − ( 𝑧 − 1 ) ) ) |
| 42 |
41
|
eleq1d |
⊢ ( 𝑥 = ( 𝑧 − 1 ) → ( ( 𝑦 − 𝑥 ) ∈ ℕ ↔ ( 𝑦 − ( 𝑧 − 1 ) ) ∈ ℕ ) ) |
| 43 |
40 42
|
imbi12d |
⊢ ( 𝑥 = ( 𝑧 − 1 ) → ( ( 𝑥 < 𝑦 → ( 𝑦 − 𝑥 ) ∈ ℕ ) ↔ ( ( 𝑧 − 1 ) < 𝑦 → ( 𝑦 − ( 𝑧 − 1 ) ) ∈ ℕ ) ) ) |
| 44 |
43
|
rspcv |
⊢ ( ( 𝑧 − 1 ) ∈ ℕ → ( ∀ 𝑥 ∈ ℕ ( 𝑥 < 𝑦 → ( 𝑦 − 𝑥 ) ∈ ℕ ) → ( ( 𝑧 − 1 ) < 𝑦 → ( 𝑦 − ( 𝑧 − 1 ) ) ∈ ℕ ) ) ) |
| 45 |
|
nnre |
⊢ ( 𝑧 ∈ ℕ → 𝑧 ∈ ℝ ) |
| 46 |
|
nnre |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℝ ) |
| 47 |
|
1re |
⊢ 1 ∈ ℝ |
| 48 |
|
ltsubadd |
⊢ ( ( 𝑧 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 𝑧 − 1 ) < 𝑦 ↔ 𝑧 < ( 𝑦 + 1 ) ) ) |
| 49 |
47 48
|
mp3an2 |
⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 𝑧 − 1 ) < 𝑦 ↔ 𝑧 < ( 𝑦 + 1 ) ) ) |
| 50 |
45 46 49
|
syl2anr |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( ( 𝑧 − 1 ) < 𝑦 ↔ 𝑧 < ( 𝑦 + 1 ) ) ) |
| 51 |
|
nncn |
⊢ ( 𝑧 ∈ ℕ → 𝑧 ∈ ℂ ) |
| 52 |
|
subsub3 |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑦 − ( 𝑧 − 1 ) ) = ( ( 𝑦 + 1 ) − 𝑧 ) ) |
| 53 |
31 52
|
mp3an3 |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( 𝑦 − ( 𝑧 − 1 ) ) = ( ( 𝑦 + 1 ) − 𝑧 ) ) |
| 54 |
29 51 53
|
syl2an |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( 𝑦 − ( 𝑧 − 1 ) ) = ( ( 𝑦 + 1 ) − 𝑧 ) ) |
| 55 |
54
|
eleq1d |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( ( 𝑦 − ( 𝑧 − 1 ) ) ∈ ℕ ↔ ( ( 𝑦 + 1 ) − 𝑧 ) ∈ ℕ ) ) |
| 56 |
50 55
|
imbi12d |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( ( ( 𝑧 − 1 ) < 𝑦 → ( 𝑦 − ( 𝑧 − 1 ) ) ∈ ℕ ) ↔ ( 𝑧 < ( 𝑦 + 1 ) → ( ( 𝑦 + 1 ) − 𝑧 ) ∈ ℕ ) ) ) |
| 57 |
56
|
biimpd |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( ( ( 𝑧 − 1 ) < 𝑦 → ( 𝑦 − ( 𝑧 − 1 ) ) ∈ ℕ ) → ( 𝑧 < ( 𝑦 + 1 ) → ( ( 𝑦 + 1 ) − 𝑧 ) ∈ ℕ ) ) ) |
| 58 |
44 57
|
syl9r |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( ( 𝑧 − 1 ) ∈ ℕ → ( ∀ 𝑥 ∈ ℕ ( 𝑥 < 𝑦 → ( 𝑦 − 𝑥 ) ∈ ℕ ) → ( 𝑧 < ( 𝑦 + 1 ) → ( ( 𝑦 + 1 ) − 𝑧 ) ∈ ℕ ) ) ) ) |
| 59 |
|
nn1m1nn |
⊢ ( 𝑧 ∈ ℕ → ( 𝑧 = 1 ∨ ( 𝑧 − 1 ) ∈ ℕ ) ) |
| 60 |
59
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( 𝑧 = 1 ∨ ( 𝑧 − 1 ) ∈ ℕ ) ) |
| 61 |
39 58 60
|
mpjaod |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) → ( ∀ 𝑥 ∈ ℕ ( 𝑥 < 𝑦 → ( 𝑦 − 𝑥 ) ∈ ℕ ) → ( 𝑧 < ( 𝑦 + 1 ) → ( ( 𝑦 + 1 ) − 𝑧 ) ∈ ℕ ) ) ) |
| 62 |
61
|
ralrimdva |
⊢ ( 𝑦 ∈ ℕ → ( ∀ 𝑥 ∈ ℕ ( 𝑥 < 𝑦 → ( 𝑦 − 𝑥 ) ∈ ℕ ) → ∀ 𝑧 ∈ ℕ ( 𝑧 < ( 𝑦 + 1 ) → ( ( 𝑦 + 1 ) − 𝑧 ) ∈ ℕ ) ) ) |
| 63 |
28 62
|
biimtrid |
⊢ ( 𝑦 ∈ ℕ → ( ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝑦 → ( 𝑦 − 𝑧 ) ∈ ℕ ) → ∀ 𝑧 ∈ ℕ ( 𝑧 < ( 𝑦 + 1 ) → ( ( 𝑦 + 1 ) − 𝑧 ) ∈ ℕ ) ) ) |
| 64 |
5 10 15 20 23 63
|
nnind |
⊢ ( 𝐵 ∈ ℕ → ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝐵 → ( 𝐵 − 𝑧 ) ∈ ℕ ) ) |
| 65 |
|
breq1 |
⊢ ( 𝑧 = 𝐴 → ( 𝑧 < 𝐵 ↔ 𝐴 < 𝐵 ) ) |
| 66 |
|
oveq2 |
⊢ ( 𝑧 = 𝐴 → ( 𝐵 − 𝑧 ) = ( 𝐵 − 𝐴 ) ) |
| 67 |
66
|
eleq1d |
⊢ ( 𝑧 = 𝐴 → ( ( 𝐵 − 𝑧 ) ∈ ℕ ↔ ( 𝐵 − 𝐴 ) ∈ ℕ ) ) |
| 68 |
65 67
|
imbi12d |
⊢ ( 𝑧 = 𝐴 → ( ( 𝑧 < 𝐵 → ( 𝐵 − 𝑧 ) ∈ ℕ ) ↔ ( 𝐴 < 𝐵 → ( 𝐵 − 𝐴 ) ∈ ℕ ) ) ) |
| 69 |
68
|
rspcva |
⊢ ( ( 𝐴 ∈ ℕ ∧ ∀ 𝑧 ∈ ℕ ( 𝑧 < 𝐵 → ( 𝐵 − 𝑧 ) ∈ ℕ ) ) → ( 𝐴 < 𝐵 → ( 𝐵 − 𝐴 ) ∈ ℕ ) ) |
| 70 |
64 69
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 < 𝐵 → ( 𝐵 − 𝐴 ) ∈ ℕ ) ) |
| 71 |
|
nngt0 |
⊢ ( ( 𝐵 − 𝐴 ) ∈ ℕ → 0 < ( 𝐵 − 𝐴 ) ) |
| 72 |
|
nnre |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℝ ) |
| 73 |
|
nnre |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℝ ) |
| 74 |
|
posdif |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ 0 < ( 𝐵 − 𝐴 ) ) ) |
| 75 |
72 73 74
|
syl2an |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 < 𝐵 ↔ 0 < ( 𝐵 − 𝐴 ) ) ) |
| 76 |
71 75
|
imbitrrid |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐵 − 𝐴 ) ∈ ℕ → 𝐴 < 𝐵 ) ) |
| 77 |
70 76
|
impbid |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 < 𝐵 ↔ ( 𝐵 − 𝐴 ) ∈ ℕ ) ) |