Metamath Proof Explorer


Theorem nnsubi

Description: Subtraction of positive integers. (Contributed by NM, 19-Aug-2001)

Ref Expression
Hypotheses nnsub.1 𝐴 ∈ ℕ
nnsub.2 𝐵 ∈ ℕ
Assertion nnsubi ( 𝐴 < 𝐵 ↔ ( 𝐵𝐴 ) ∈ ℕ )

Proof

Step Hyp Ref Expression
1 nnsub.1 𝐴 ∈ ℕ
2 nnsub.2 𝐵 ∈ ℕ
3 nnsub ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 < 𝐵 ↔ ( 𝐵𝐴 ) ∈ ℕ ) )
4 1 2 3 mp2an ( 𝐴 < 𝐵 ↔ ( 𝐵𝐴 ) ∈ ℕ )