Step |
Hyp |
Ref |
Expression |
1 |
|
nnlim |
⊢ ( 𝐴 ∈ ω → ¬ Lim 𝐴 ) |
2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐴 ≠ ∅ ) → ¬ Lim 𝐴 ) |
3 |
|
nnord |
⊢ ( 𝐴 ∈ ω → Ord 𝐴 ) |
4 |
|
orduninsuc |
⊢ ( Ord 𝐴 → ( 𝐴 = ∪ 𝐴 ↔ ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) |
5 |
4
|
adantr |
⊢ ( ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ) → ( 𝐴 = ∪ 𝐴 ↔ ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) |
6 |
|
df-lim |
⊢ ( Lim 𝐴 ↔ ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴 ) ) |
7 |
6
|
biimpri |
⊢ ( ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴 ) → Lim 𝐴 ) |
8 |
7
|
3expia |
⊢ ( ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ) → ( 𝐴 = ∪ 𝐴 → Lim 𝐴 ) ) |
9 |
5 8
|
sylbird |
⊢ ( ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ) → ( ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 → Lim 𝐴 ) ) |
10 |
3 9
|
sylan |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐴 ≠ ∅ ) → ( ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 → Lim 𝐴 ) ) |
11 |
2 10
|
mt3d |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) |
12 |
|
eleq1 |
⊢ ( 𝐴 = suc 𝑥 → ( 𝐴 ∈ ω ↔ suc 𝑥 ∈ ω ) ) |
13 |
12
|
biimpcd |
⊢ ( 𝐴 ∈ ω → ( 𝐴 = suc 𝑥 → suc 𝑥 ∈ ω ) ) |
14 |
|
peano2b |
⊢ ( 𝑥 ∈ ω ↔ suc 𝑥 ∈ ω ) |
15 |
13 14
|
syl6ibr |
⊢ ( 𝐴 ∈ ω → ( 𝐴 = suc 𝑥 → 𝑥 ∈ ω ) ) |
16 |
15
|
ancrd |
⊢ ( 𝐴 ∈ ω → ( 𝐴 = suc 𝑥 → ( 𝑥 ∈ ω ∧ 𝐴 = suc 𝑥 ) ) ) |
17 |
16
|
adantld |
⊢ ( 𝐴 ∈ ω → ( ( 𝑥 ∈ On ∧ 𝐴 = suc 𝑥 ) → ( 𝑥 ∈ ω ∧ 𝐴 = suc 𝑥 ) ) ) |
18 |
17
|
reximdv2 |
⊢ ( 𝐴 ∈ ω → ( ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 → ∃ 𝑥 ∈ ω 𝐴 = suc 𝑥 ) ) |
19 |
18
|
adantr |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐴 ≠ ∅ ) → ( ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 → ∃ 𝑥 ∈ ω 𝐴 = suc 𝑥 ) ) |
20 |
11 19
|
mpd |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ ω 𝐴 = suc 𝑥 ) |