Step |
Hyp |
Ref |
Expression |
1 |
|
1nn |
⊢ 1 ∈ ℕ |
2 |
|
1zzd |
⊢ ( 𝑃 ∈ ℙ → 1 ∈ ℤ ) |
3 |
|
id |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℙ ) |
4 |
2 3
|
fsnd |
⊢ ( 𝑃 ∈ ℙ → { 〈 1 , 𝑃 〉 } : { 1 } ⟶ ℙ ) |
5 |
|
prmex |
⊢ ℙ ∈ V |
6 |
|
snex |
⊢ { 1 } ∈ V |
7 |
5 6
|
elmap |
⊢ ( { 〈 1 , 𝑃 〉 } ∈ ( ℙ ↑m { 1 } ) ↔ { 〈 1 , 𝑃 〉 } : { 1 } ⟶ ℙ ) |
8 |
4 7
|
sylibr |
⊢ ( 𝑃 ∈ ℙ → { 〈 1 , 𝑃 〉 } ∈ ( ℙ ↑m { 1 } ) ) |
9 |
|
1re |
⊢ 1 ∈ ℝ |
10 |
|
simpl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑘 ∈ { 1 } ) → 𝑃 ∈ ℙ ) |
11 |
|
fvsng |
⊢ ( ( 1 ∈ ℝ ∧ 𝑃 ∈ ℙ ) → ( { 〈 1 , 𝑃 〉 } ‘ 1 ) = 𝑃 ) |
12 |
9 10 11
|
sylancr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑘 ∈ { 1 } ) → ( { 〈 1 , 𝑃 〉 } ‘ 1 ) = 𝑃 ) |
13 |
12
|
sumeq2dv |
⊢ ( 𝑃 ∈ ℙ → Σ 𝑘 ∈ { 1 } ( { 〈 1 , 𝑃 〉 } ‘ 1 ) = Σ 𝑘 ∈ { 1 } 𝑃 ) |
14 |
|
prmz |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) |
15 |
14
|
zcnd |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℂ ) |
16 |
|
eqidd |
⊢ ( 𝑘 = 1 → 𝑃 = 𝑃 ) |
17 |
16
|
sumsn |
⊢ ( ( 1 ∈ ℝ ∧ 𝑃 ∈ ℂ ) → Σ 𝑘 ∈ { 1 } 𝑃 = 𝑃 ) |
18 |
9 15 17
|
sylancr |
⊢ ( 𝑃 ∈ ℙ → Σ 𝑘 ∈ { 1 } 𝑃 = 𝑃 ) |
19 |
13 18
|
eqtr2d |
⊢ ( 𝑃 ∈ ℙ → 𝑃 = Σ 𝑘 ∈ { 1 } ( { 〈 1 , 𝑃 〉 } ‘ 1 ) ) |
20 |
|
1le3 |
⊢ 1 ≤ 3 |
21 |
19 20
|
jctil |
⊢ ( 𝑃 ∈ ℙ → ( 1 ≤ 3 ∧ 𝑃 = Σ 𝑘 ∈ { 1 } ( { 〈 1 , 𝑃 〉 } ‘ 1 ) ) ) |
22 |
|
simpl |
⊢ ( ( 𝑓 = { 〈 1 , 𝑃 〉 } ∧ 𝑘 ∈ { 1 } ) → 𝑓 = { 〈 1 , 𝑃 〉 } ) |
23 |
|
elsni |
⊢ ( 𝑘 ∈ { 1 } → 𝑘 = 1 ) |
24 |
23
|
adantl |
⊢ ( ( 𝑓 = { 〈 1 , 𝑃 〉 } ∧ 𝑘 ∈ { 1 } ) → 𝑘 = 1 ) |
25 |
22 24
|
fveq12d |
⊢ ( ( 𝑓 = { 〈 1 , 𝑃 〉 } ∧ 𝑘 ∈ { 1 } ) → ( 𝑓 ‘ 𝑘 ) = ( { 〈 1 , 𝑃 〉 } ‘ 1 ) ) |
26 |
25
|
sumeq2dv |
⊢ ( 𝑓 = { 〈 1 , 𝑃 〉 } → Σ 𝑘 ∈ { 1 } ( 𝑓 ‘ 𝑘 ) = Σ 𝑘 ∈ { 1 } ( { 〈 1 , 𝑃 〉 } ‘ 1 ) ) |
27 |
26
|
eqeq2d |
⊢ ( 𝑓 = { 〈 1 , 𝑃 〉 } → ( 𝑃 = Σ 𝑘 ∈ { 1 } ( 𝑓 ‘ 𝑘 ) ↔ 𝑃 = Σ 𝑘 ∈ { 1 } ( { 〈 1 , 𝑃 〉 } ‘ 1 ) ) ) |
28 |
27
|
anbi2d |
⊢ ( 𝑓 = { 〈 1 , 𝑃 〉 } → ( ( 1 ≤ 3 ∧ 𝑃 = Σ 𝑘 ∈ { 1 } ( 𝑓 ‘ 𝑘 ) ) ↔ ( 1 ≤ 3 ∧ 𝑃 = Σ 𝑘 ∈ { 1 } ( { 〈 1 , 𝑃 〉 } ‘ 1 ) ) ) ) |
29 |
28
|
rspcev |
⊢ ( ( { 〈 1 , 𝑃 〉 } ∈ ( ℙ ↑m { 1 } ) ∧ ( 1 ≤ 3 ∧ 𝑃 = Σ 𝑘 ∈ { 1 } ( { 〈 1 , 𝑃 〉 } ‘ 1 ) ) ) → ∃ 𝑓 ∈ ( ℙ ↑m { 1 } ) ( 1 ≤ 3 ∧ 𝑃 = Σ 𝑘 ∈ { 1 } ( 𝑓 ‘ 𝑘 ) ) ) |
30 |
8 21 29
|
syl2anc |
⊢ ( 𝑃 ∈ ℙ → ∃ 𝑓 ∈ ( ℙ ↑m { 1 } ) ( 1 ≤ 3 ∧ 𝑃 = Σ 𝑘 ∈ { 1 } ( 𝑓 ‘ 𝑘 ) ) ) |
31 |
|
oveq2 |
⊢ ( 𝑑 = 1 → ( 1 ... 𝑑 ) = ( 1 ... 1 ) ) |
32 |
|
1z |
⊢ 1 ∈ ℤ |
33 |
|
fzsn |
⊢ ( 1 ∈ ℤ → ( 1 ... 1 ) = { 1 } ) |
34 |
32 33
|
ax-mp |
⊢ ( 1 ... 1 ) = { 1 } |
35 |
31 34
|
eqtrdi |
⊢ ( 𝑑 = 1 → ( 1 ... 𝑑 ) = { 1 } ) |
36 |
35
|
oveq2d |
⊢ ( 𝑑 = 1 → ( ℙ ↑m ( 1 ... 𝑑 ) ) = ( ℙ ↑m { 1 } ) ) |
37 |
|
breq1 |
⊢ ( 𝑑 = 1 → ( 𝑑 ≤ 3 ↔ 1 ≤ 3 ) ) |
38 |
35
|
sumeq1d |
⊢ ( 𝑑 = 1 → Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) = Σ 𝑘 ∈ { 1 } ( 𝑓 ‘ 𝑘 ) ) |
39 |
38
|
eqeq2d |
⊢ ( 𝑑 = 1 → ( 𝑃 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ↔ 𝑃 = Σ 𝑘 ∈ { 1 } ( 𝑓 ‘ 𝑘 ) ) ) |
40 |
37 39
|
anbi12d |
⊢ ( 𝑑 = 1 → ( ( 𝑑 ≤ 3 ∧ 𝑃 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ↔ ( 1 ≤ 3 ∧ 𝑃 = Σ 𝑘 ∈ { 1 } ( 𝑓 ‘ 𝑘 ) ) ) ) |
41 |
36 40
|
rexeqbidv |
⊢ ( 𝑑 = 1 → ( ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 3 ∧ 𝑃 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ↔ ∃ 𝑓 ∈ ( ℙ ↑m { 1 } ) ( 1 ≤ 3 ∧ 𝑃 = Σ 𝑘 ∈ { 1 } ( 𝑓 ‘ 𝑘 ) ) ) ) |
42 |
41
|
rspcev |
⊢ ( ( 1 ∈ ℕ ∧ ∃ 𝑓 ∈ ( ℙ ↑m { 1 } ) ( 1 ≤ 3 ∧ 𝑃 = Σ 𝑘 ∈ { 1 } ( 𝑓 ‘ 𝑘 ) ) ) → ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 3 ∧ 𝑃 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) |
43 |
1 30 42
|
sylancr |
⊢ ( 𝑃 ∈ ℙ → ∃ 𝑑 ∈ ℕ ∃ 𝑓 ∈ ( ℙ ↑m ( 1 ... 𝑑 ) ) ( 𝑑 ≤ 3 ∧ 𝑃 = Σ 𝑘 ∈ ( 1 ... 𝑑 ) ( 𝑓 ‘ 𝑘 ) ) ) |