| Step | Hyp | Ref | Expression | 
						
							| 1 |  | n0 | ⊢ ( 𝐴  ≠  ∅  ↔  ∃ 𝑦 𝑦  ∈  𝐴 ) | 
						
							| 2 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 3 | 2 | snss | ⊢ ( 𝑦  ∈  𝐴  ↔  { 𝑦 }  ⊆  𝐴 ) | 
						
							| 4 | 2 | snnz | ⊢ { 𝑦 }  ≠  ∅ | 
						
							| 5 |  | vsnex | ⊢ { 𝑦 }  ∈  V | 
						
							| 6 |  | sseq1 | ⊢ ( 𝑥  =  { 𝑦 }  →  ( 𝑥  ⊆  𝐴  ↔  { 𝑦 }  ⊆  𝐴 ) ) | 
						
							| 7 |  | neeq1 | ⊢ ( 𝑥  =  { 𝑦 }  →  ( 𝑥  ≠  ∅  ↔  { 𝑦 }  ≠  ∅ ) ) | 
						
							| 8 | 6 7 | anbi12d | ⊢ ( 𝑥  =  { 𝑦 }  →  ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  ↔  ( { 𝑦 }  ⊆  𝐴  ∧  { 𝑦 }  ≠  ∅ ) ) ) | 
						
							| 9 | 5 8 | spcev | ⊢ ( ( { 𝑦 }  ⊆  𝐴  ∧  { 𝑦 }  ≠  ∅ )  →  ∃ 𝑥 ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ ) ) | 
						
							| 10 | 4 9 | mpan2 | ⊢ ( { 𝑦 }  ⊆  𝐴  →  ∃ 𝑥 ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ ) ) | 
						
							| 11 | 3 10 | sylbi | ⊢ ( 𝑦  ∈  𝐴  →  ∃ 𝑥 ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ ) ) | 
						
							| 12 | 11 | exlimiv | ⊢ ( ∃ 𝑦 𝑦  ∈  𝐴  →  ∃ 𝑥 ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ ) ) | 
						
							| 13 | 1 12 | sylbi | ⊢ ( 𝐴  ≠  ∅  →  ∃ 𝑥 ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ ) ) |