Step |
Hyp |
Ref |
Expression |
1 |
|
n0 |
⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝐴 ) |
2 |
|
vex |
⊢ 𝑦 ∈ V |
3 |
2
|
snss |
⊢ ( 𝑦 ∈ 𝐴 ↔ { 𝑦 } ⊆ 𝐴 ) |
4 |
2
|
snnz |
⊢ { 𝑦 } ≠ ∅ |
5 |
|
snex |
⊢ { 𝑦 } ∈ V |
6 |
|
sseq1 |
⊢ ( 𝑥 = { 𝑦 } → ( 𝑥 ⊆ 𝐴 ↔ { 𝑦 } ⊆ 𝐴 ) ) |
7 |
|
neeq1 |
⊢ ( 𝑥 = { 𝑦 } → ( 𝑥 ≠ ∅ ↔ { 𝑦 } ≠ ∅ ) ) |
8 |
6 7
|
anbi12d |
⊢ ( 𝑥 = { 𝑦 } → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ↔ ( { 𝑦 } ⊆ 𝐴 ∧ { 𝑦 } ≠ ∅ ) ) ) |
9 |
5 8
|
spcev |
⊢ ( ( { 𝑦 } ⊆ 𝐴 ∧ { 𝑦 } ≠ ∅ ) → ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ) |
10 |
4 9
|
mpan2 |
⊢ ( { 𝑦 } ⊆ 𝐴 → ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ) |
11 |
3 10
|
sylbi |
⊢ ( 𝑦 ∈ 𝐴 → ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ) |
12 |
11
|
exlimiv |
⊢ ( ∃ 𝑦 𝑦 ∈ 𝐴 → ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ) |
13 |
1 12
|
sylbi |
⊢ ( 𝐴 ≠ ∅ → ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ) |