Metamath Proof Explorer


Theorem nnullss

Description: A nonempty class (even if proper) has a nonempty subset. (Contributed by NM, 23-Aug-2003)

Ref Expression
Assertion nnullss ( 𝐴 ≠ ∅ → ∃ 𝑥 ( 𝑥𝐴𝑥 ≠ ∅ ) )

Proof

Step Hyp Ref Expression
1 n0 ( 𝐴 ≠ ∅ ↔ ∃ 𝑦 𝑦𝐴 )
2 vex 𝑦 ∈ V
3 2 snss ( 𝑦𝐴 ↔ { 𝑦 } ⊆ 𝐴 )
4 2 snnz { 𝑦 } ≠ ∅
5 snex { 𝑦 } ∈ V
6 sseq1 ( 𝑥 = { 𝑦 } → ( 𝑥𝐴 ↔ { 𝑦 } ⊆ 𝐴 ) )
7 neeq1 ( 𝑥 = { 𝑦 } → ( 𝑥 ≠ ∅ ↔ { 𝑦 } ≠ ∅ ) )
8 6 7 anbi12d ( 𝑥 = { 𝑦 } → ( ( 𝑥𝐴𝑥 ≠ ∅ ) ↔ ( { 𝑦 } ⊆ 𝐴 ∧ { 𝑦 } ≠ ∅ ) ) )
9 5 8 spcev ( ( { 𝑦 } ⊆ 𝐴 ∧ { 𝑦 } ≠ ∅ ) → ∃ 𝑥 ( 𝑥𝐴𝑥 ≠ ∅ ) )
10 4 9 mpan2 ( { 𝑦 } ⊆ 𝐴 → ∃ 𝑥 ( 𝑥𝐴𝑥 ≠ ∅ ) )
11 3 10 sylbi ( 𝑦𝐴 → ∃ 𝑥 ( 𝑥𝐴𝑥 ≠ ∅ ) )
12 11 exlimiv ( ∃ 𝑦 𝑦𝐴 → ∃ 𝑥 ( 𝑥𝐴𝑥 ≠ ∅ ) )
13 1 12 sylbi ( 𝐴 ≠ ∅ → ∃ 𝑥 ( 𝑥𝐴𝑥 ≠ ∅ ) )