Step |
Hyp |
Ref |
Expression |
1 |
|
pm3.24 |
⊢ ¬ ( ∀ 𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ¬ ∀ 𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ) |
2 |
|
peano2rem |
⊢ ( 𝑥 ∈ ℝ → ( 𝑥 − 1 ) ∈ ℝ ) |
3 |
|
ltm1 |
⊢ ( 𝑥 ∈ ℝ → ( 𝑥 − 1 ) < 𝑥 ) |
4 |
|
ovex |
⊢ ( 𝑥 − 1 ) ∈ V |
5 |
|
eleq1 |
⊢ ( 𝑦 = ( 𝑥 − 1 ) → ( 𝑦 ∈ ℝ ↔ ( 𝑥 − 1 ) ∈ ℝ ) ) |
6 |
|
breq1 |
⊢ ( 𝑦 = ( 𝑥 − 1 ) → ( 𝑦 < 𝑥 ↔ ( 𝑥 − 1 ) < 𝑥 ) ) |
7 |
|
breq1 |
⊢ ( 𝑦 = ( 𝑥 − 1 ) → ( 𝑦 < 𝑧 ↔ ( 𝑥 − 1 ) < 𝑧 ) ) |
8 |
7
|
rexbidv |
⊢ ( 𝑦 = ( 𝑥 − 1 ) → ( ∃ 𝑧 ∈ ℕ 𝑦 < 𝑧 ↔ ∃ 𝑧 ∈ ℕ ( 𝑥 − 1 ) < 𝑧 ) ) |
9 |
6 8
|
imbi12d |
⊢ ( 𝑦 = ( 𝑥 − 1 ) → ( ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ℕ 𝑦 < 𝑧 ) ↔ ( ( 𝑥 − 1 ) < 𝑥 → ∃ 𝑧 ∈ ℕ ( 𝑥 − 1 ) < 𝑧 ) ) ) |
10 |
5 9
|
imbi12d |
⊢ ( 𝑦 = ( 𝑥 − 1 ) → ( ( 𝑦 ∈ ℝ → ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ℕ 𝑦 < 𝑧 ) ) ↔ ( ( 𝑥 − 1 ) ∈ ℝ → ( ( 𝑥 − 1 ) < 𝑥 → ∃ 𝑧 ∈ ℕ ( 𝑥 − 1 ) < 𝑧 ) ) ) ) |
11 |
4 10
|
spcv |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ ℝ → ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ℕ 𝑦 < 𝑧 ) ) → ( ( 𝑥 − 1 ) ∈ ℝ → ( ( 𝑥 − 1 ) < 𝑥 → ∃ 𝑧 ∈ ℕ ( 𝑥 − 1 ) < 𝑧 ) ) ) |
12 |
3 11
|
syl7 |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ ℝ → ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ℕ 𝑦 < 𝑧 ) ) → ( ( 𝑥 − 1 ) ∈ ℝ → ( 𝑥 ∈ ℝ → ∃ 𝑧 ∈ ℕ ( 𝑥 − 1 ) < 𝑧 ) ) ) |
13 |
2 12
|
syl5 |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ ℝ → ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ℕ 𝑦 < 𝑧 ) ) → ( 𝑥 ∈ ℝ → ( 𝑥 ∈ ℝ → ∃ 𝑧 ∈ ℕ ( 𝑥 − 1 ) < 𝑧 ) ) ) |
14 |
13
|
pm2.43d |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ ℝ → ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ℕ 𝑦 < 𝑧 ) ) → ( 𝑥 ∈ ℝ → ∃ 𝑧 ∈ ℕ ( 𝑥 − 1 ) < 𝑧 ) ) |
15 |
|
df-rex |
⊢ ( ∃ 𝑧 ∈ ℕ ( 𝑥 − 1 ) < 𝑧 ↔ ∃ 𝑧 ( 𝑧 ∈ ℕ ∧ ( 𝑥 − 1 ) < 𝑧 ) ) |
16 |
14 15
|
syl6ib |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ ℝ → ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ℕ 𝑦 < 𝑧 ) ) → ( 𝑥 ∈ ℝ → ∃ 𝑧 ( 𝑧 ∈ ℕ ∧ ( 𝑥 − 1 ) < 𝑧 ) ) ) |
17 |
16
|
com12 |
⊢ ( 𝑥 ∈ ℝ → ( ∀ 𝑦 ( 𝑦 ∈ ℝ → ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ℕ 𝑦 < 𝑧 ) ) → ∃ 𝑧 ( 𝑧 ∈ ℕ ∧ ( 𝑥 − 1 ) < 𝑧 ) ) ) |
18 |
|
nnre |
⊢ ( 𝑧 ∈ ℕ → 𝑧 ∈ ℝ ) |
19 |
|
1re |
⊢ 1 ∈ ℝ |
20 |
|
ltsubadd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( ( 𝑥 − 1 ) < 𝑧 ↔ 𝑥 < ( 𝑧 + 1 ) ) ) |
21 |
19 20
|
mp3an2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( ( 𝑥 − 1 ) < 𝑧 ↔ 𝑥 < ( 𝑧 + 1 ) ) ) |
22 |
18 21
|
sylan2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑧 ∈ ℕ ) → ( ( 𝑥 − 1 ) < 𝑧 ↔ 𝑥 < ( 𝑧 + 1 ) ) ) |
23 |
22
|
pm5.32da |
⊢ ( 𝑥 ∈ ℝ → ( ( 𝑧 ∈ ℕ ∧ ( 𝑥 − 1 ) < 𝑧 ) ↔ ( 𝑧 ∈ ℕ ∧ 𝑥 < ( 𝑧 + 1 ) ) ) ) |
24 |
23
|
exbidv |
⊢ ( 𝑥 ∈ ℝ → ( ∃ 𝑧 ( 𝑧 ∈ ℕ ∧ ( 𝑥 − 1 ) < 𝑧 ) ↔ ∃ 𝑧 ( 𝑧 ∈ ℕ ∧ 𝑥 < ( 𝑧 + 1 ) ) ) ) |
25 |
|
peano2nn |
⊢ ( 𝑧 ∈ ℕ → ( 𝑧 + 1 ) ∈ ℕ ) |
26 |
|
ovex |
⊢ ( 𝑧 + 1 ) ∈ V |
27 |
|
eleq1 |
⊢ ( 𝑦 = ( 𝑧 + 1 ) → ( 𝑦 ∈ ℕ ↔ ( 𝑧 + 1 ) ∈ ℕ ) ) |
28 |
|
breq2 |
⊢ ( 𝑦 = ( 𝑧 + 1 ) → ( 𝑥 < 𝑦 ↔ 𝑥 < ( 𝑧 + 1 ) ) ) |
29 |
27 28
|
anbi12d |
⊢ ( 𝑦 = ( 𝑧 + 1 ) → ( ( 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) ↔ ( ( 𝑧 + 1 ) ∈ ℕ ∧ 𝑥 < ( 𝑧 + 1 ) ) ) ) |
30 |
26 29
|
spcev |
⊢ ( ( ( 𝑧 + 1 ) ∈ ℕ ∧ 𝑥 < ( 𝑧 + 1 ) ) → ∃ 𝑦 ( 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) ) |
31 |
25 30
|
sylan |
⊢ ( ( 𝑧 ∈ ℕ ∧ 𝑥 < ( 𝑧 + 1 ) ) → ∃ 𝑦 ( 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) ) |
32 |
31
|
exlimiv |
⊢ ( ∃ 𝑧 ( 𝑧 ∈ ℕ ∧ 𝑥 < ( 𝑧 + 1 ) ) → ∃ 𝑦 ( 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) ) |
33 |
24 32
|
syl6bi |
⊢ ( 𝑥 ∈ ℝ → ( ∃ 𝑧 ( 𝑧 ∈ ℕ ∧ ( 𝑥 − 1 ) < 𝑧 ) → ∃ 𝑦 ( 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) ) ) |
34 |
17 33
|
syld |
⊢ ( 𝑥 ∈ ℝ → ( ∀ 𝑦 ( 𝑦 ∈ ℝ → ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ℕ 𝑦 < 𝑧 ) ) → ∃ 𝑦 ( 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) ) ) |
35 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ℕ 𝑦 < 𝑧 ) ↔ ∀ 𝑦 ( 𝑦 ∈ ℝ → ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ℕ 𝑦 < 𝑧 ) ) ) |
36 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ↔ ∀ 𝑦 ( 𝑦 ∈ ℕ → ¬ 𝑥 < 𝑦 ) ) |
37 |
|
alinexa |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ ℕ → ¬ 𝑥 < 𝑦 ) ↔ ¬ ∃ 𝑦 ( 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) ) |
38 |
36 37
|
bitr2i |
⊢ ( ¬ ∃ 𝑦 ( 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) ↔ ∀ 𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ) |
39 |
38
|
con1bii |
⊢ ( ¬ ∀ 𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ↔ ∃ 𝑦 ( 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) ) |
40 |
34 35 39
|
3imtr4g |
⊢ ( 𝑥 ∈ ℝ → ( ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ℕ 𝑦 < 𝑧 ) → ¬ ∀ 𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ) ) |
41 |
40
|
anim2d |
⊢ ( 𝑥 ∈ ℝ → ( ( ∀ 𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ℕ 𝑦 < 𝑧 ) ) → ( ∀ 𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ¬ ∀ 𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ) ) ) |
42 |
1 41
|
mtoi |
⊢ ( 𝑥 ∈ ℝ → ¬ ( ∀ 𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ℕ 𝑦 < 𝑧 ) ) ) |
43 |
42
|
nrex |
⊢ ¬ ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ℕ 𝑦 < 𝑧 ) ) |
44 |
|
nnssre |
⊢ ℕ ⊆ ℝ |
45 |
|
1nn |
⊢ 1 ∈ ℕ |
46 |
45
|
ne0ii |
⊢ ℕ ≠ ∅ |
47 |
|
sup2 |
⊢ ( ( ℕ ⊆ ℝ ∧ ℕ ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) → ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ℕ 𝑦 < 𝑧 ) ) ) |
48 |
44 46 47
|
mp3an12 |
⊢ ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) → ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑥 → ∃ 𝑧 ∈ ℕ 𝑦 < 𝑧 ) ) ) |
49 |
43 48
|
mto |
⊢ ¬ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) |