| Step | Hyp | Ref | Expression | 
						
							| 1 |  | unieq | ⊢ ( 𝑆  =  ∅  →  ∪  𝑆  =  ∪  ∅ ) | 
						
							| 2 |  | uni0 | ⊢ ∪  ∅  =  ∅ | 
						
							| 3 |  | peano1 | ⊢ ∅  ∈  ω | 
						
							| 4 | 2 3 | eqeltri | ⊢ ∪  ∅  ∈  ω | 
						
							| 5 | 1 4 | eqeltrdi | ⊢ ( 𝑆  =  ∅  →  ∪  𝑆  ∈  ω ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( ( 𝑆  ⊆  ω  ∧  𝑆  ∈  Fin )  ∧  𝑆  =  ∅ )  →  ∪  𝑆  ∈  ω ) | 
						
							| 7 |  | simpll | ⊢ ( ( ( 𝑆  ⊆  ω  ∧  𝑆  ∈  Fin )  ∧  𝑆  ≠  ∅ )  →  𝑆  ⊆  ω ) | 
						
							| 8 |  | omsson | ⊢ ω  ⊆  On | 
						
							| 9 | 7 8 | sstrdi | ⊢ ( ( ( 𝑆  ⊆  ω  ∧  𝑆  ∈  Fin )  ∧  𝑆  ≠  ∅ )  →  𝑆  ⊆  On ) | 
						
							| 10 |  | simplr | ⊢ ( ( ( 𝑆  ⊆  ω  ∧  𝑆  ∈  Fin )  ∧  𝑆  ≠  ∅ )  →  𝑆  ∈  Fin ) | 
						
							| 11 |  | simpr | ⊢ ( ( ( 𝑆  ⊆  ω  ∧  𝑆  ∈  Fin )  ∧  𝑆  ≠  ∅ )  →  𝑆  ≠  ∅ ) | 
						
							| 12 |  | ordunifi | ⊢ ( ( 𝑆  ⊆  On  ∧  𝑆  ∈  Fin  ∧  𝑆  ≠  ∅ )  →  ∪  𝑆  ∈  𝑆 ) | 
						
							| 13 | 9 10 11 12 | syl3anc | ⊢ ( ( ( 𝑆  ⊆  ω  ∧  𝑆  ∈  Fin )  ∧  𝑆  ≠  ∅ )  →  ∪  𝑆  ∈  𝑆 ) | 
						
							| 14 | 7 13 | sseldd | ⊢ ( ( ( 𝑆  ⊆  ω  ∧  𝑆  ∈  Fin )  ∧  𝑆  ≠  ∅ )  →  ∪  𝑆  ∈  ω ) | 
						
							| 15 | 6 14 | pm2.61dane | ⊢ ( ( 𝑆  ⊆  ω  ∧  𝑆  ∈  Fin )  →  ∪  𝑆  ∈  ω ) |