| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fz1ssfz0 | 
							⊢ ( 1 ... 𝑁 )  ⊆  ( 0 ... 𝑁 )  | 
						
						
							| 2 | 
							
								
							 | 
							ssrin | 
							⊢ ( ( 1 ... 𝑁 )  ⊆  ( 0 ... 𝑁 )  →  ( ( 1 ... 𝑁 )  ∩  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) )  ⊆  ( ( 0 ... 𝑁 )  ∩  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							ax-mp | 
							⊢ ( ( 1 ... 𝑁 )  ∩  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) )  ⊆  ( ( 0 ... 𝑁 )  ∩  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							nn0disj | 
							⊢ ( ( 0 ... 𝑁 )  ∩  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) )  =  ∅  | 
						
						
							| 5 | 
							
								
							 | 
							sseq0 | 
							⊢ ( ( ( ( 1 ... 𝑁 )  ∩  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) )  ⊆  ( ( 0 ... 𝑁 )  ∩  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) )  ∧  ( ( 0 ... 𝑁 )  ∩  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) )  =  ∅ )  →  ( ( 1 ... 𝑁 )  ∩  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) )  =  ∅ )  | 
						
						
							| 6 | 
							
								3 4 5
							 | 
							mp2an | 
							⊢ ( ( 1 ... 𝑁 )  ∩  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) )  =  ∅  |