Metamath Proof Explorer


Theorem nnwo

Description: Well-ordering principle: any nonempty set of positive integers has a least element. Theorem I.37 (well-ordering principle) of Apostol p. 34. (Contributed by NM, 17-Aug-2001)

Ref Expression
Assertion nnwo ( ( 𝐴 ⊆ ℕ ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥𝐴𝑦𝐴 𝑥𝑦 )

Proof

Step Hyp Ref Expression
1 nnuz ℕ = ( ℤ ‘ 1 )
2 1 sseq2i ( 𝐴 ⊆ ℕ ↔ 𝐴 ⊆ ( ℤ ‘ 1 ) )
3 uzwo ( ( 𝐴 ⊆ ( ℤ ‘ 1 ) ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥𝐴𝑦𝐴 𝑥𝑦 )
4 2 3 sylanb ( ( 𝐴 ⊆ ℕ ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥𝐴𝑦𝐴 𝑥𝑦 )