| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnwof.1 | ⊢ Ⅎ 𝑥 𝐴 | 
						
							| 2 |  | nnwof.2 | ⊢ Ⅎ 𝑦 𝐴 | 
						
							| 3 |  | nnwo | ⊢ ( ( 𝐴  ⊆  ℕ  ∧  𝐴  ≠  ∅ )  →  ∃ 𝑤  ∈  𝐴 ∀ 𝑣  ∈  𝐴 𝑤  ≤  𝑣 ) | 
						
							| 4 |  | nfcv | ⊢ Ⅎ 𝑤 𝐴 | 
						
							| 5 |  | nfv | ⊢ Ⅎ 𝑥 𝑤  ≤  𝑣 | 
						
							| 6 | 1 5 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑣  ∈  𝐴 𝑤  ≤  𝑣 | 
						
							| 7 |  | nfv | ⊢ Ⅎ 𝑤 ∀ 𝑦  ∈  𝐴 𝑥  ≤  𝑦 | 
						
							| 8 |  | breq1 | ⊢ ( 𝑤  =  𝑥  →  ( 𝑤  ≤  𝑣  ↔  𝑥  ≤  𝑣 ) ) | 
						
							| 9 | 8 | ralbidv | ⊢ ( 𝑤  =  𝑥  →  ( ∀ 𝑣  ∈  𝐴 𝑤  ≤  𝑣  ↔  ∀ 𝑣  ∈  𝐴 𝑥  ≤  𝑣 ) ) | 
						
							| 10 |  | nfcv | ⊢ Ⅎ 𝑣 𝐴 | 
						
							| 11 |  | nfv | ⊢ Ⅎ 𝑦 𝑥  ≤  𝑣 | 
						
							| 12 |  | nfv | ⊢ Ⅎ 𝑣 𝑥  ≤  𝑦 | 
						
							| 13 |  | breq2 | ⊢ ( 𝑣  =  𝑦  →  ( 𝑥  ≤  𝑣  ↔  𝑥  ≤  𝑦 ) ) | 
						
							| 14 | 10 2 11 12 13 | cbvralfw | ⊢ ( ∀ 𝑣  ∈  𝐴 𝑥  ≤  𝑣  ↔  ∀ 𝑦  ∈  𝐴 𝑥  ≤  𝑦 ) | 
						
							| 15 | 9 14 | bitrdi | ⊢ ( 𝑤  =  𝑥  →  ( ∀ 𝑣  ∈  𝐴 𝑤  ≤  𝑣  ↔  ∀ 𝑦  ∈  𝐴 𝑥  ≤  𝑦 ) ) | 
						
							| 16 | 4 1 6 7 15 | cbvrexfw | ⊢ ( ∃ 𝑤  ∈  𝐴 ∀ 𝑣  ∈  𝐴 𝑤  ≤  𝑣  ↔  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 𝑥  ≤  𝑦 ) | 
						
							| 17 | 3 16 | sylib | ⊢ ( ( 𝐴  ⊆  ℕ  ∧  𝐴  ≠  ∅ )  →  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 𝑥  ≤  𝑦 ) |