| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnwos.1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 2 |  | nfrab1 | ⊢ Ⅎ 𝑥 { 𝑥  ∈  ℕ  ∣  𝜑 } | 
						
							| 3 |  | nfcv | ⊢ Ⅎ 𝑦 { 𝑥  ∈  ℕ  ∣  𝜑 } | 
						
							| 4 | 2 3 | nnwof | ⊢ ( ( { 𝑥  ∈  ℕ  ∣  𝜑 }  ⊆  ℕ  ∧  { 𝑥  ∈  ℕ  ∣  𝜑 }  ≠  ∅ )  →  ∃ 𝑥  ∈  { 𝑥  ∈  ℕ  ∣  𝜑 } ∀ 𝑦  ∈  { 𝑥  ∈  ℕ  ∣  𝜑 } 𝑥  ≤  𝑦 ) | 
						
							| 5 |  | ssrab2 | ⊢ { 𝑥  ∈  ℕ  ∣  𝜑 }  ⊆  ℕ | 
						
							| 6 | 5 | biantrur | ⊢ ( { 𝑥  ∈  ℕ  ∣  𝜑 }  ≠  ∅  ↔  ( { 𝑥  ∈  ℕ  ∣  𝜑 }  ⊆  ℕ  ∧  { 𝑥  ∈  ℕ  ∣  𝜑 }  ≠  ∅ ) ) | 
						
							| 7 |  | rabn0 | ⊢ ( { 𝑥  ∈  ℕ  ∣  𝜑 }  ≠  ∅  ↔  ∃ 𝑥  ∈  ℕ 𝜑 ) | 
						
							| 8 | 6 7 | bitr3i | ⊢ ( ( { 𝑥  ∈  ℕ  ∣  𝜑 }  ⊆  ℕ  ∧  { 𝑥  ∈  ℕ  ∣  𝜑 }  ≠  ∅ )  ↔  ∃ 𝑥  ∈  ℕ 𝜑 ) | 
						
							| 9 |  | df-rex | ⊢ ( ∃ 𝑥  ∈  { 𝑥  ∈  ℕ  ∣  𝜑 } ∀ 𝑦  ∈  { 𝑥  ∈  ℕ  ∣  𝜑 } 𝑥  ≤  𝑦  ↔  ∃ 𝑥 ( 𝑥  ∈  { 𝑥  ∈  ℕ  ∣  𝜑 }  ∧  ∀ 𝑦  ∈  { 𝑥  ∈  ℕ  ∣  𝜑 } 𝑥  ≤  𝑦 ) ) | 
						
							| 10 |  | rabid | ⊢ ( 𝑥  ∈  { 𝑥  ∈  ℕ  ∣  𝜑 }  ↔  ( 𝑥  ∈  ℕ  ∧  𝜑 ) ) | 
						
							| 11 |  | df-ral | ⊢ ( ∀ 𝑦  ∈  { 𝑥  ∈  ℕ  ∣  𝜑 } 𝑥  ≤  𝑦  ↔  ∀ 𝑦 ( 𝑦  ∈  { 𝑥  ∈  ℕ  ∣  𝜑 }  →  𝑥  ≤  𝑦 ) ) | 
						
							| 12 | 1 | elrab | ⊢ ( 𝑦  ∈  { 𝑥  ∈  ℕ  ∣  𝜑 }  ↔  ( 𝑦  ∈  ℕ  ∧  𝜓 ) ) | 
						
							| 13 | 12 | imbi1i | ⊢ ( ( 𝑦  ∈  { 𝑥  ∈  ℕ  ∣  𝜑 }  →  𝑥  ≤  𝑦 )  ↔  ( ( 𝑦  ∈  ℕ  ∧  𝜓 )  →  𝑥  ≤  𝑦 ) ) | 
						
							| 14 |  | impexp | ⊢ ( ( ( 𝑦  ∈  ℕ  ∧  𝜓 )  →  𝑥  ≤  𝑦 )  ↔  ( 𝑦  ∈  ℕ  →  ( 𝜓  →  𝑥  ≤  𝑦 ) ) ) | 
						
							| 15 | 13 14 | bitri | ⊢ ( ( 𝑦  ∈  { 𝑥  ∈  ℕ  ∣  𝜑 }  →  𝑥  ≤  𝑦 )  ↔  ( 𝑦  ∈  ℕ  →  ( 𝜓  →  𝑥  ≤  𝑦 ) ) ) | 
						
							| 16 | 15 | albii | ⊢ ( ∀ 𝑦 ( 𝑦  ∈  { 𝑥  ∈  ℕ  ∣  𝜑 }  →  𝑥  ≤  𝑦 )  ↔  ∀ 𝑦 ( 𝑦  ∈  ℕ  →  ( 𝜓  →  𝑥  ≤  𝑦 ) ) ) | 
						
							| 17 | 11 16 | bitri | ⊢ ( ∀ 𝑦  ∈  { 𝑥  ∈  ℕ  ∣  𝜑 } 𝑥  ≤  𝑦  ↔  ∀ 𝑦 ( 𝑦  ∈  ℕ  →  ( 𝜓  →  𝑥  ≤  𝑦 ) ) ) | 
						
							| 18 | 10 17 | anbi12i | ⊢ ( ( 𝑥  ∈  { 𝑥  ∈  ℕ  ∣  𝜑 }  ∧  ∀ 𝑦  ∈  { 𝑥  ∈  ℕ  ∣  𝜑 } 𝑥  ≤  𝑦 )  ↔  ( ( 𝑥  ∈  ℕ  ∧  𝜑 )  ∧  ∀ 𝑦 ( 𝑦  ∈  ℕ  →  ( 𝜓  →  𝑥  ≤  𝑦 ) ) ) ) | 
						
							| 19 | 18 | exbii | ⊢ ( ∃ 𝑥 ( 𝑥  ∈  { 𝑥  ∈  ℕ  ∣  𝜑 }  ∧  ∀ 𝑦  ∈  { 𝑥  ∈  ℕ  ∣  𝜑 } 𝑥  ≤  𝑦 )  ↔  ∃ 𝑥 ( ( 𝑥  ∈  ℕ  ∧  𝜑 )  ∧  ∀ 𝑦 ( 𝑦  ∈  ℕ  →  ( 𝜓  →  𝑥  ≤  𝑦 ) ) ) ) | 
						
							| 20 |  | df-ral | ⊢ ( ∀ 𝑦  ∈  ℕ ( 𝜓  →  𝑥  ≤  𝑦 )  ↔  ∀ 𝑦 ( 𝑦  ∈  ℕ  →  ( 𝜓  →  𝑥  ≤  𝑦 ) ) ) | 
						
							| 21 | 20 | anbi2i | ⊢ ( ( ( 𝑥  ∈  ℕ  ∧  𝜑 )  ∧  ∀ 𝑦  ∈  ℕ ( 𝜓  →  𝑥  ≤  𝑦 ) )  ↔  ( ( 𝑥  ∈  ℕ  ∧  𝜑 )  ∧  ∀ 𝑦 ( 𝑦  ∈  ℕ  →  ( 𝜓  →  𝑥  ≤  𝑦 ) ) ) ) | 
						
							| 22 |  | anass | ⊢ ( ( ( 𝑥  ∈  ℕ  ∧  𝜑 )  ∧  ∀ 𝑦  ∈  ℕ ( 𝜓  →  𝑥  ≤  𝑦 ) )  ↔  ( 𝑥  ∈  ℕ  ∧  ( 𝜑  ∧  ∀ 𝑦  ∈  ℕ ( 𝜓  →  𝑥  ≤  𝑦 ) ) ) ) | 
						
							| 23 | 21 22 | bitr3i | ⊢ ( ( ( 𝑥  ∈  ℕ  ∧  𝜑 )  ∧  ∀ 𝑦 ( 𝑦  ∈  ℕ  →  ( 𝜓  →  𝑥  ≤  𝑦 ) ) )  ↔  ( 𝑥  ∈  ℕ  ∧  ( 𝜑  ∧  ∀ 𝑦  ∈  ℕ ( 𝜓  →  𝑥  ≤  𝑦 ) ) ) ) | 
						
							| 24 | 23 | exbii | ⊢ ( ∃ 𝑥 ( ( 𝑥  ∈  ℕ  ∧  𝜑 )  ∧  ∀ 𝑦 ( 𝑦  ∈  ℕ  →  ( 𝜓  →  𝑥  ≤  𝑦 ) ) )  ↔  ∃ 𝑥 ( 𝑥  ∈  ℕ  ∧  ( 𝜑  ∧  ∀ 𝑦  ∈  ℕ ( 𝜓  →  𝑥  ≤  𝑦 ) ) ) ) | 
						
							| 25 |  | df-rex | ⊢ ( ∃ 𝑥  ∈  ℕ ( 𝜑  ∧  ∀ 𝑦  ∈  ℕ ( 𝜓  →  𝑥  ≤  𝑦 ) )  ↔  ∃ 𝑥 ( 𝑥  ∈  ℕ  ∧  ( 𝜑  ∧  ∀ 𝑦  ∈  ℕ ( 𝜓  →  𝑥  ≤  𝑦 ) ) ) ) | 
						
							| 26 | 24 25 | bitr4i | ⊢ ( ∃ 𝑥 ( ( 𝑥  ∈  ℕ  ∧  𝜑 )  ∧  ∀ 𝑦 ( 𝑦  ∈  ℕ  →  ( 𝜓  →  𝑥  ≤  𝑦 ) ) )  ↔  ∃ 𝑥  ∈  ℕ ( 𝜑  ∧  ∀ 𝑦  ∈  ℕ ( 𝜓  →  𝑥  ≤  𝑦 ) ) ) | 
						
							| 27 | 9 19 26 | 3bitri | ⊢ ( ∃ 𝑥  ∈  { 𝑥  ∈  ℕ  ∣  𝜑 } ∀ 𝑦  ∈  { 𝑥  ∈  ℕ  ∣  𝜑 } 𝑥  ≤  𝑦  ↔  ∃ 𝑥  ∈  ℕ ( 𝜑  ∧  ∀ 𝑦  ∈  ℕ ( 𝜓  →  𝑥  ≤  𝑦 ) ) ) | 
						
							| 28 | 4 8 27 | 3imtr3i | ⊢ ( ∃ 𝑥  ∈  ℕ 𝜑  →  ∃ 𝑥  ∈  ℕ ( 𝜑  ∧  ∀ 𝑦  ∈  ℕ ( 𝜓  →  𝑥  ≤  𝑦 ) ) ) |