| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnwos.1 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
| 2 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ ℕ ∣ 𝜑 } |
| 3 |
|
nfcv |
⊢ Ⅎ 𝑦 { 𝑥 ∈ ℕ ∣ 𝜑 } |
| 4 |
2 3
|
nnwof |
⊢ ( ( { 𝑥 ∈ ℕ ∣ 𝜑 } ⊆ ℕ ∧ { 𝑥 ∈ ℕ ∣ 𝜑 } ≠ ∅ ) → ∃ 𝑥 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } ∀ 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } 𝑥 ≤ 𝑦 ) |
| 5 |
|
ssrab2 |
⊢ { 𝑥 ∈ ℕ ∣ 𝜑 } ⊆ ℕ |
| 6 |
5
|
biantrur |
⊢ ( { 𝑥 ∈ ℕ ∣ 𝜑 } ≠ ∅ ↔ ( { 𝑥 ∈ ℕ ∣ 𝜑 } ⊆ ℕ ∧ { 𝑥 ∈ ℕ ∣ 𝜑 } ≠ ∅ ) ) |
| 7 |
|
rabn0 |
⊢ ( { 𝑥 ∈ ℕ ∣ 𝜑 } ≠ ∅ ↔ ∃ 𝑥 ∈ ℕ 𝜑 ) |
| 8 |
6 7
|
bitr3i |
⊢ ( ( { 𝑥 ∈ ℕ ∣ 𝜑 } ⊆ ℕ ∧ { 𝑥 ∈ ℕ ∣ 𝜑 } ≠ ∅ ) ↔ ∃ 𝑥 ∈ ℕ 𝜑 ) |
| 9 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } ∀ 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } 𝑥 ≤ 𝑦 ↔ ∃ 𝑥 ( 𝑥 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } ∧ ∀ 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } 𝑥 ≤ 𝑦 ) ) |
| 10 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } ↔ ( 𝑥 ∈ ℕ ∧ 𝜑 ) ) |
| 11 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } 𝑥 ≤ 𝑦 ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } → 𝑥 ≤ 𝑦 ) ) |
| 12 |
1
|
elrab |
⊢ ( 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } ↔ ( 𝑦 ∈ ℕ ∧ 𝜓 ) ) |
| 13 |
12
|
imbi1i |
⊢ ( ( 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } → 𝑥 ≤ 𝑦 ) ↔ ( ( 𝑦 ∈ ℕ ∧ 𝜓 ) → 𝑥 ≤ 𝑦 ) ) |
| 14 |
|
impexp |
⊢ ( ( ( 𝑦 ∈ ℕ ∧ 𝜓 ) → 𝑥 ≤ 𝑦 ) ↔ ( 𝑦 ∈ ℕ → ( 𝜓 → 𝑥 ≤ 𝑦 ) ) ) |
| 15 |
13 14
|
bitri |
⊢ ( ( 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } → 𝑥 ≤ 𝑦 ) ↔ ( 𝑦 ∈ ℕ → ( 𝜓 → 𝑥 ≤ 𝑦 ) ) ) |
| 16 |
15
|
albii |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } → 𝑥 ≤ 𝑦 ) ↔ ∀ 𝑦 ( 𝑦 ∈ ℕ → ( 𝜓 → 𝑥 ≤ 𝑦 ) ) ) |
| 17 |
11 16
|
bitri |
⊢ ( ∀ 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } 𝑥 ≤ 𝑦 ↔ ∀ 𝑦 ( 𝑦 ∈ ℕ → ( 𝜓 → 𝑥 ≤ 𝑦 ) ) ) |
| 18 |
10 17
|
anbi12i |
⊢ ( ( 𝑥 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } ∧ ∀ 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } 𝑥 ≤ 𝑦 ) ↔ ( ( 𝑥 ∈ ℕ ∧ 𝜑 ) ∧ ∀ 𝑦 ( 𝑦 ∈ ℕ → ( 𝜓 → 𝑥 ≤ 𝑦 ) ) ) ) |
| 19 |
18
|
exbii |
⊢ ( ∃ 𝑥 ( 𝑥 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } ∧ ∀ 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } 𝑥 ≤ 𝑦 ) ↔ ∃ 𝑥 ( ( 𝑥 ∈ ℕ ∧ 𝜑 ) ∧ ∀ 𝑦 ( 𝑦 ∈ ℕ → ( 𝜓 → 𝑥 ≤ 𝑦 ) ) ) ) |
| 20 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ ℕ ( 𝜓 → 𝑥 ≤ 𝑦 ) ↔ ∀ 𝑦 ( 𝑦 ∈ ℕ → ( 𝜓 → 𝑥 ≤ 𝑦 ) ) ) |
| 21 |
20
|
anbi2i |
⊢ ( ( ( 𝑥 ∈ ℕ ∧ 𝜑 ) ∧ ∀ 𝑦 ∈ ℕ ( 𝜓 → 𝑥 ≤ 𝑦 ) ) ↔ ( ( 𝑥 ∈ ℕ ∧ 𝜑 ) ∧ ∀ 𝑦 ( 𝑦 ∈ ℕ → ( 𝜓 → 𝑥 ≤ 𝑦 ) ) ) ) |
| 22 |
|
anass |
⊢ ( ( ( 𝑥 ∈ ℕ ∧ 𝜑 ) ∧ ∀ 𝑦 ∈ ℕ ( 𝜓 → 𝑥 ≤ 𝑦 ) ) ↔ ( 𝑥 ∈ ℕ ∧ ( 𝜑 ∧ ∀ 𝑦 ∈ ℕ ( 𝜓 → 𝑥 ≤ 𝑦 ) ) ) ) |
| 23 |
21 22
|
bitr3i |
⊢ ( ( ( 𝑥 ∈ ℕ ∧ 𝜑 ) ∧ ∀ 𝑦 ( 𝑦 ∈ ℕ → ( 𝜓 → 𝑥 ≤ 𝑦 ) ) ) ↔ ( 𝑥 ∈ ℕ ∧ ( 𝜑 ∧ ∀ 𝑦 ∈ ℕ ( 𝜓 → 𝑥 ≤ 𝑦 ) ) ) ) |
| 24 |
23
|
exbii |
⊢ ( ∃ 𝑥 ( ( 𝑥 ∈ ℕ ∧ 𝜑 ) ∧ ∀ 𝑦 ( 𝑦 ∈ ℕ → ( 𝜓 → 𝑥 ≤ 𝑦 ) ) ) ↔ ∃ 𝑥 ( 𝑥 ∈ ℕ ∧ ( 𝜑 ∧ ∀ 𝑦 ∈ ℕ ( 𝜓 → 𝑥 ≤ 𝑦 ) ) ) ) |
| 25 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ ℕ ( 𝜑 ∧ ∀ 𝑦 ∈ ℕ ( 𝜓 → 𝑥 ≤ 𝑦 ) ) ↔ ∃ 𝑥 ( 𝑥 ∈ ℕ ∧ ( 𝜑 ∧ ∀ 𝑦 ∈ ℕ ( 𝜓 → 𝑥 ≤ 𝑦 ) ) ) ) |
| 26 |
24 25
|
bitr4i |
⊢ ( ∃ 𝑥 ( ( 𝑥 ∈ ℕ ∧ 𝜑 ) ∧ ∀ 𝑦 ( 𝑦 ∈ ℕ → ( 𝜓 → 𝑥 ≤ 𝑦 ) ) ) ↔ ∃ 𝑥 ∈ ℕ ( 𝜑 ∧ ∀ 𝑦 ∈ ℕ ( 𝜓 → 𝑥 ≤ 𝑦 ) ) ) |
| 27 |
9 19 26
|
3bitri |
⊢ ( ∃ 𝑥 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } ∀ 𝑦 ∈ { 𝑥 ∈ ℕ ∣ 𝜑 } 𝑥 ≤ 𝑦 ↔ ∃ 𝑥 ∈ ℕ ( 𝜑 ∧ ∀ 𝑦 ∈ ℕ ( 𝜓 → 𝑥 ≤ 𝑦 ) ) ) |
| 28 |
4 8 27
|
3imtr3i |
⊢ ( ∃ 𝑥 ∈ ℕ 𝜑 → ∃ 𝑥 ∈ ℕ ( 𝜑 ∧ ∀ 𝑦 ∈ ℕ ( 𝜓 → 𝑥 ≤ 𝑦 ) ) ) |